• Title/Summary/Keyword: Solvent-separated ion-pair

Search Result 6, Processing Time 0.018 seconds

Extraction of Water-Soluble Porphyrin and Metalloporphyrins into Acetonitrile by Salting-out

  • Tabata, Masaaki;Kumamoto, Midori
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.511-517
    • /
    • 1995
  • A cationic water soluble porphyrin (5,10,15,20-tetrakis (l-methyl-pyridinium-4-yl)porphyrin, $H_2tmpyp^{4+}$) and its metalloporphyrins (MP) were easily extracted into acetonitrile separated by addition of sodium chloride ($4mol\;dm^{-3}$) in the presence of sodium perchlorate, where M denotes $Zn^{2+}$, $Cu^{2+}$, $Co^{3+}$, $Fe^{3+}$, and $Mn^{3+}$ and $P^{2-}$ is porphyrinate ion. The extracted ion-pair complexes were completely dissociated to $[MP(ClO_4)_3]^+$, and $[MP(ClO_4)_2]^{2+}$. The extraction and the dissociation constants were determined by taking into account of the partition constant of sodium perchlorate ($K_D=1.82{\pm}0.01$). The chemical properties of the separated acetonitrile phase as $E_{T(30)}$ and $D_{II,I}$ were determined and compared with other water miscible solvents (acetone, actonitrile, 1,4-dioxane, tetrahydrofuran, 1-propanol and 2-propanol). Furthermore, a sensitive and selective method was proposed for the determination of a subnanogram amount of copper(II) in natural water samples by using the present salting-out method and the porphyrins.

  • PDF

Correlation of the Rates of Solvolyses of Cinnamyl Bromide

  • Koo, In-Sun;Cho, Jun-Mi;An, Sun-Kyoung;Yang, Ki-Yull;Lee, Jong-Pal;Lee, I.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.431-436
    • /
    • 2003
  • Solvolytic rate constants at 25℃ are reported for solvolyses of cinnamyl bromide (1) in binary mixtures of water with acetone, ethanol, methanol, methanol-d, and 2,2,2-trifluoroethanol. Product selectivities are reported for solvolyses of 1 in aqueous ethanol and methanol. Rate ratios in solvents of the same $Y_{Br}$ value and different nucleophilicity provide measures of the minimum extent of nucleophilic solvent assistance (e.g. $[k_{40EW}/k_{97TFE}]$Y = 2.88, EW = ethanol-water). With use of the extended Grunwald-Winstein equation, the l and m values are similar to the values of 0.43 and 0.88 obtained for the solvolyses of 1 using the equation (see below) which includes a parameter (I) for solvation of aromatic rings. The magnitude of l and m values associated with a change of solvent composition predicts the $S_{N1}$ reaction mechanism rather than an $S_{N2}$ channel. Product selectivities (S), defined by S = [ether product]/[alcohol product]×[water]/[alcohol solvent] are related to four rate constants for reactions involving one molecule of solvent as nucleophile and another molecule of solvent as general base catalyst. A linear relationship between 1/S and molar ratio of solvent is derived theoretically and validated experimentally for solvolyses of the above substrates from water up 75% 1/S = $(k_{wa}/k_{aw})$([alcohol solvent]/[water]) + $k_{ww}/k_{aw}$ alcohol-water. The results are best explained by product formation from a “free” carbocation intermediate rather than from a solvent-separated ion pair.

Determination of Veterinary Antibiotic Residues: III. Analytical Methods_A Review (시료 중 잔류 항생제 분석 방법: III. 기기 분석 방법)

  • Kim, Chansik;Ryu, Hong-Duck;Chung, Eu Gene;Kim, Yongseok;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.649-669
    • /
    • 2016
  • This study explored the analytical conditions for 21 veterinary antibiotics which have been popularly sold in South Korea in 2014 but have not yet been targeted in EPA method 1694. Most of the selected antibiotics were separated by a reverse-phase C18 column with a combination of (buffered) water and organic polar solvent, which was commonly methanol and acetonitrile in the gradient elution mode. Volatile additives such as formic acid, ammonium acetate and ammonium formate were usually added to the mobile phases to minimize asymmetrical and tailing of antibiotics' peaks and to increase their ionization in mass spectrometry. The analytical methods of aminoglycoside antibiotics were distinct from those of the other antibiotics in terms of adoption of ion-pair chromatography (IPC) and hydrophilic interaction liquid chromatography (HILIC) capable of retaining and separating extremely polar compounds due to their hydrophilicity. Trifluoroacetic acid or heptafluorobutyric acid was frequently added to the mobile phase as an ion-pair reagent for the IPC. Tandem mass spectrometry was numerously applied to the detection of antibiotics using positive electrospray ionization (ESI) and the selected reaction monitoring (SRM) mode. All reviewed analytical methods had been/were validated by evaluating recovery, limits of detection and quantification, decision limit or detection capability of the methods.

Metal-Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Thionobenzoate: Effects of Modification of Electrophilic Center from C=O to C=S

  • Um, Ik-Hwan;Song, Yoon-Ju;Kim, Min-Young;Lee, Jae-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1525-1529
    • /
    • 2013
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the nucleophilic substitution reactions of 2-pyridyl thionobenzoate (5b) with alkali-metal ethoxides (EtOM, $M^+=Li^+$, $Na^+$, $K^+$, and 18-crown-6-ether complexed $K^+$) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. $[EtOM]_o$ curve upward regardless of the nature of the $M^+$ ions, while those of $k_{obsd}/[EtO^-]_{eq}$ vs. $[EtO^-]_{eq}$ are linear with a positive intercept. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that the ion-paired EtOM is more reactive than the dissociated $EtO^-$, and $M^+$ ions catalyze the reactions in the order $K^+$ < $Na^+$ < $Li^+$ < 18C6-complexed $K^+$. The plot of log $k_{EtOM}$ vs. $1/r_{Stokes}$ results in an excellent linear correlation, indicating that the reactions are catalyzed by the solvated $M^+$ ions but not by the bare $M^+$ ions. The reactions of 5b with EtOM have been concluded to proceed through a six-membered cyclic TS, in which the solvated $M^+$ ions increase the electrophilicity of the reaction center and the nucleofugality of the leaving group.

Speciation of Chromium in Water Samples with Homogeneous Liquid-Liquid Extraction and Determination by Flame Atomic Absorption Spectrometry

  • Abkenar, Shiva Dehghan;Hosseini, Morteza;Dahaghin, Zohreh;Salavati-Niasari, Masoud;Jamali, Mohammad Reza
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2813-2818
    • /
    • 2010
  • A novel method was developed for the speciation of chromium in natural water samples based on homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry (FAAS). In this method, Cr(III) reacts with a new Schiff's base ligand to form the hydrophobic complex, which is subsequently entrapped in the sediment phase, whereas Cr(VI) remained in aqueous phase. The Cr(VI) assay is based on its reduction to Cr(III) by the addition of sodium sulfite to the sample solution. Thus, separation of Cr(III) and Cr(VI) could be realized. Homogeneous liquid-liquid extraction based on the pH-independent phase-separation process was investigated using a ternary solvent system (water-tetrabutylammonium ion ($TBA^+$)-chloroform) for the preconcentration of chromium. The phase separation phenomenon occurred by an ion-pair formation of TBA and perchlorate ion. Then sedimented phase was separated using a $100\;{\mu}L$ micro-syringe and diluted to 1.0 mL with ethanol. The sample was introduced into the flame by conventional aspiration. After the optimization of complexation and extraction conditions such as pH = 9.5, [ligand] = $1.0{\times}10^{-4}\;M$, [$TBA^+$] = $2.0{\times}10^{-2}\;M$, [$CHCl_3$] = $100.0\;{\mu}L$ and [$ClO_4$] = $2.0{\times}10{-2}\;M$, a preconcentration factor (Va/Vs) of 100 was obtained for only 10 mL of the sample. The relative standard deviation was 2.8% (n = 10). The limit of detection was sufficiently low and lie at ppb level. The proposed method was applied for the extraction and determination of chromium in natural water samples with satisfactory results.

Spectrophotometric Determination of Trace Amount of Sulfide by Formation of Iodide and Its Solvent Extraction with Mehtylene Green (요오드이온 생성 및 Methylene Green과의 용매추출에 의한 미량 황이온의 분광광도법 정량)

  • Kam, Sang-Kyu;Kim, Kyung-Youn
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.261-269
    • /
    • 1994
  • The iodide formed stoichiometrically for sulfide by its oxidation with iodate was extracted as an ion-pair with methylene green into 1,2-dichloroethane and the extract was measured spectrophotometrically at 656nm for the determination of sulfide. Hydrogen sulfide separated from the sample matrix was introduced into a solution containing pH 3.5 acetate buffer and iodate, in which the hydrogen sulfide was completely converted into iodide. A linear calibration graph was obtained over the range $3{\times}10^{-7}{\sim}1.2{\times}10^{-5}M$ sulfide($0.0096{\sim}0.384{\mu}g$ of $S^{2-}/ml$) and the detection limit was $0.0032{\mu}g/ml$. The apparent molar absorptivity and a correlation coefficient(r) were $6.7{\times}10^4L\;mole^{-1}\;cm^{-1}$ and 0.999, respectively. When applied to the stream water samples, the proposed method gave a relative standard deviation of 1.59% at $5{\times}10^{-6}M$ sulfide level.

  • PDF