• Title/Summary/Keyword: Solvent-casting

Search Result 145, Processing Time 0.028 seconds

Blend membranes based on sulfonated-fluorinated poly(arylene ether)s and chemically-modified polyvinilydene fluoride for high performance PEMFC (고분자 전해질 막 연료 전지의 고성능을 위한 술폰화된 과불소계 poly(arylene ehter)s와 화학적으로 변형된 polyvinilydene fluoride의 blend 막 연구)

  • Kim, Na-Young;Seo, Min-Seon;Lee, In-Ja
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.426-426
    • /
    • 2008
  • Blend membranes were prepared by solvent casting method from sulfonated fluorinated poly(arylene ether)s (SDFF) and chemically modified polyvinylidene fluoride (mPVdF) in isopropanol and were evaluated as proton exchange membrane electrolytes in PEMFC. $^1H$-NMR, differential scanning calorimeter and thermogravimetric analysis was utilized to characterize the structure of the blend membranes (SDFF/mPVDF) and effects of mPVDF content on the properties of the membrane such as water uptake and proton conductivity were also investigated.

  • PDF

A Study on the Dispersion of Multi-walled Nanotube of MWNT/PMMA Nanocomposites (MWNT/PMMA 나노복합재료 제작시 MWNT의 분산에 관한 연구)

  • 김현철;이상의;김천곤;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.29-32
    • /
    • 2003
  • Multi -walled carbon nanotube(MWNT)/poly(methyl methacrylate) composites were fabricate d through film casting. Manufacturing process was established using a ultrasonic cleaner and a homogenizer. Acetone was used as a solvent to melt PMMA and mix with MWNT. The ultrasonic cleaner performed an important role in producing MWNT/MMA nanocomposites. Ultrasonic energy was utilized to disperse MWNT in acetone. Also, melting PMMA in acetone and mixing MWNT and PMMA were achieved using the homogenizer. It was confirmed that the nanohlbes were well dispersed in PMMA according to SEM images.

  • PDF

Development of Enzyme Immobilization Method to Remove Interference by Physiological Chemicals for Implantable Glucose Sensors (이식형 혈당 센서의 생리활성 물질에 의한 방해 효과를 제거하기 위한 새로운 효소고정법 개발)

  • Chung, T.D.;Kim, H.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.72-73
    • /
    • 1998
  • A new method for enzyme immobilization has been developed to remove interference by potential interferents in body fluids. Instead of using electron mediators, we chose direct hydrogen peroxide measurement route. Extremely hydrogen peroxide-selective polymer was coated as an inner membrane to exclude interferents and then glucose oxidase(GOx) was entrapped by electropolymerization of inert monomers. There was no solvent casting step throughout the whole fabrication procedure but all membranes on Pt-Ir electrode were formed by electropolymerization. Thus, membrane thickness, quantity of enzyme loaded and can be controlled by electrochemical parameters. As a result, reproducibility of biosensor characteristics becomes remarkably improved in terms of mass production.

  • PDF

Preparation of Cellulose Acetate Containing Silver Nitrate as Oxygen Carrier (질산은을 산소 캐리어로 하는 CA막의 제조)

  • Ahn, Pil-Seong;Lee, Woo-Tai
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.83-90
    • /
    • 1999
  • A cellulose acetate membrane containing silver nitrate was prepared by gelatinizing in water at $2^{\circ}C$ after evaporating solvent from the casting solution on a glass plate. Permeation experiments for oxygen and nitrogen were conducted in the ranges of temperature, $5-40^{\circ}C$ and pressure difference, $1-5kg/cm^2$ in order to investigate the effects of temperature and pressure difference on permeation characteristics of the membrane. When the evaporation time was increased, the permeability of oxygen decreased but the separation factor of oxygen against nitrogen increased since a more dense layer was formed on the membrane surface. When the silver nitrate was added, the permeation flux was doubled and the separation factor was improved from 3.0 to 3.3. This implies that silver nitrate acts as an oxygen carrier in the membrane.

  • PDF

Fabrication of spiral scaffolds with nano-etched surface by using an innovative 3D printing method (혁신적인 3D 프린팅 방법을 사용하여 나노-에칭된 표면을 갖은 나선형 세포담체 제작)

  • Yang, Ji-Hun;Lee, Jae-Yun;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.73-73
    • /
    • 2018
  • 조직재생공학은 조직이나 장기를 재생하고 유지하는 데 초점을 맞춘 종합 분야이다. 세포담체는 세포가 조직이나 장기로 발달 할 수 있도록 결정적인 역할을 한다. 따라서 공극률, 기공 크기, 기공 상호 연결성, 표면 거칠기, 기계적 강도 및 기하학과 같은 기본 요구 사항들은 중요한 특성으로 간주된다. Particle leaching, phase separation, solvent casting, gas foaming, selective laser sintering, fused deposition 및 3D dispensing (printing)과 같은 다양한 Rapid Prototyping 방법이 세포담체 제조에 사용되었다. 또한, 다양한 천연 및 합성 고분자가 세포담체를 제조하는데 사용되어왔다. 본 연구에서는 기존의 3D 프린팅 방법과 플라즈마 에칭 공정을 이용하여 나노 에칭 된 나선형 가닥으로 구성된 3 차원 세포담체를 제작 하였다. 제작 된 세포담체의 물리적 및 생물학적 성질을 비교 연구하기 위해, 본 연구에서는 매끄러운 가닥을 대조물로 사용하였다. 나노 에칭된 표면은 초기 세포 부착, 증식 및 골 형성 분화와 같은 세포 활동에 영향을 미쳤다.

  • PDF

Preparation and Characterization of Biopolymer-Based Nanocomposite Films: Chitosan-Based Nanocomposite Films with Antimicrobial Activity

  • Rhim, Jong-Whan
    • 한국포장학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.54-73
    • /
    • 2006
  • Four different types of chitosan-based nanocomposite films were prepared using a solvent casting method by incorporating with four types of nanoparticles, i.e., an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. SEM micrographs showed that in all the nanocomposite films, except the Nanosilver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, i.e., tensile strength (TS) increased by 7-16%, while water vapor permeability (WVP) decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.

  • PDF

Review on PVA as a Water Soluble Packaging Material (수용성 폴리비닐알콜(PVA) 포장소재의 이용)

  • Lee, Ji-Youn;Jang, Si-Hun;Park, Su-Il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • It is now widely recognized that the disposal of packaging waste is an increasing environmental concern. Recent interest in polymer waste management of packaging materials has added incentive to the research. Poly(vinyl alcohol) is a readily biodegradable water-soluble polymer. However, this polymer cannot be processed by conventional extrusion technologies because the melting point of PVA is close to its decomposition temperature. Therefore, PVA films have been mostly prepared by solvent casting from water. Applications of PVA include sizing, binders, fibers, and films for agricultural chemicals and hospital laundry bags. A better understanding of PVA films, which also play important roles in the degradation of plastics, will expand the usage of PVA. Composite films based on PVA generally exhibit better mechanical and thermal properties than pure PVA. The aim of this review article is to review types, formation, and properties of PVA films and PVA based composite films used in packaging related researches.

  • PDF

Characterization of Phase Inversion Membrane of Sulfonated Polyetherimide (Sulfonated Polyetherimide Membrane의 특성)

  • 김완주;최남석;최중구;김인철;김종호;탁태문
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Sulfonated polyetherimide having anionic charge and better hydrophilicity than polyetherimide was prepared by reacting polyetherimide with chlorosulfonic acid. To prepare casting solution, from which the membrane having good performance can produce. Polyvinylpyrrolidone as a pore forming agent and volatile weak solvent such as dichloromethane to foml the dense skin layer were added to the sulfonated polyetherimide / N -methyl-2-pyrrolidone solution. Membrane fabricated sulfonated PEl showed better fouling resistance to the protein than those fabricated PEL because of its hydrophilicity. Solute having negative charge was removed effectively with membrane fabricated from the sulfonated PEl because of its the same electron charge.

  • PDF

PEDOT:PSS Thin Films with Different Pattern Structures Prepared Using Colloidal Template

  • Yu, Jung-Hoon;Lee, Jin-Su;Nam, Sang-Hun;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.254-260
    • /
    • 2014
  • Organic solar cells have attracted extensive attention as a promising approach for cost-effective photovoltaic devices. However, organic solar cell has disadvantage of low power conversion efficiency in comparison with other type of solar cell, due to the recombination ratio of hole and electron is too large in the active layer. Thus we have change the surface structure of PEDOT:PSS layers to improve the current density by colloidal lithography method using various-size of polystyrene sphere. The two types of coating method were applied to fabricate the different pattern shape and height, such as spin coating and drop casting. Using the organic solvent, we easily eliminate the PS sphere and could make the varied pattern shapes by controlling the wet etching time. Also we have measured the electrical properties of patterned PEDOT:PSS film to check whether it is suitable for organic photovoltaics.

The Effect of Synthetic Polymer Membranes on the Skin Permeation of Anti-AIDS Drugs (항에이즈 약물의 경피흡수에 미치는 합성고분자 멤브레인의 영향)

  • Lee, Kyung-Jin;Kim, Dae-Duk;Chien, Yie W.
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • The effect of synthetic polymer membranes on the permeation rate of dideoxynucleoside-type anti-HIV drugs through hairless rat skin was studied using ethylene/vinyl acetate copolymer (EVA) and ethylene/methyl acrylate copolymer (EMA) membranes fabricated by solvent casting method. In vitro skin permeation kinetics study of DDC (2',3'-dideoxythymidine), DDI (2',3'-dideoxyinosine) and AZT (3'-azido-3'-deoxythymidine) across the (membrane/skin) composite was conducted for 24 hours at $37^{\circ}C$ using the Valia-Chien skin permeation system. The results showed that skin permeation rate of each drug across the (skin/membrane) composite was mainly dependent on the property of the membrane. Proper selection of the polymeric membrane which resembles hydrophilicity/lipophilicity of the delivering drug was important in controlling the skin permeation rate.

  • PDF