• Title/Summary/Keyword: Solvent removal

Search Result 211, Processing Time 0.03 seconds

Developent of a new technique removing paint from recycled car-bumper (기계적 방법과 화학적 방법을 혼합한 폐범퍼 도장 제거 기술 개발)

  • Cruz, Heidy;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3298-3303
    • /
    • 2014
  • In order to recycle the waste bumper, techniques removing coated paint on a bumper is crucial. Chemical methods are known to be much more effective in removing the paint compared to physical methods. However, the chemical methods generally use toxic solvents and consequently cause environmental pollution. In this study, we tested a new method which combines the chemical and physical method to reduce the amount of solvent and increase the paint removal efficiency. We found that mechanical stirring increases the paint removal efficiency in soaking stage of solvent. When solid particles as a stress transfer media are incorporated into the solvent and high mechanical stirring is applied, the paint removal efficiency is very high. It was proved that the combined method can accomplish high level of the paint removal efficiency maintaining low amount of solvent consumed.

Recycling of $\beta$-Cyclodextrin Used for Cholesterol Removal from Egg Yolk (난황의 콜레스테롤 제거에 사용한 $\beta$-Cyclodextrin의 재활용)

  • 유익종;최성유;박우문;전기홍
    • Food Science of Animal Resources
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The method used to remove cholesterol from egg by using $beta$-cyclodextrin was relatively stable and efficient. The aim of this study was to cost down by recycling $\beta$-cyclodextrin used to remove cholesterol from egg yolk because $\beta$-cyclodextrin was expensive. The solvents used to separate $\beta$-cyclodextrin from $\beta$-cyclodextrin complex containing egg yolk cholesterol were butanol, chloroform, ether, hexane, methanol, 2-propanol and their mixture. The ratio of solvent and complex varied from 2 : 1 to 10 : 1. The condition of mixing time and temperature varied from 30 to 60$^{\circ}C$ and from 10 minutes to 3 hours to remove cholesterol from $\beta$-cyclodextrin complex. When the ratio of choloroform and methanol was 1 : 1, the removal efficiency of cholesterol was 98.8%. The efficiency of cholesterol removal was improved when the ratio of solvent : complex increased to 4 : 1. When mixing time and temperature was up to for 1hr, at 50$^{\circ}C$ respectively, the efficiency of cholesterol removal improved to 99%. It concluded that the efficiency of cholesterol removal of 50% renewed one contained $\beta$-cyclodextrin were 81.1% while the cholesterol removal efficiency of 100% renewed $\beta$-cyclodextrin was 24% if cholesterol removal efficiency of new $\beta$-cyclodextrin were 100%.

  • PDF

Fundamental Studies for the Removal and Recovery of Silver from Waste Photo-Developing Solution by Solvent Extraction (사진폐액으로부터 용매추출에 의한 은의 제거 및 회수에 대한 기초연구)

  • Lee, Sun-Hwa;Kim, Dong-Su;Lee, Hwa-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.122-127
    • /
    • 2006
  • Fundamental studies were carried out for an effective removal and recovery of silver from waste photo-developing solution by solvent extraction. The organic solvents examined for silver-extraction were ALIQUAT 336, D2EHPA, KELEX 100, and TBP. ALIQUAT 336, which is an anionic exchanger, was found to be efficient for the extraction of silver and the reason for this was considered to be due to the chloride ion contained in its structure. The extent of silver extraction was examined to increase with the concentration of ALIQUAT 336 until it reached 0.6 M and no more extraction was observed above this concentration. The extraction of silver by ALIQUAT 336 was found to reach its pseudo-equilibrium within a few minutes after the reaction started and additional slight increase in silver extraction was observed until 30 minutes of reaction time. The observed differences in silver extraction for artificial and actual waste solutions were considered to be based upon the different ionic form of silver-containing species in these solutions.

Reactive separation of boron using a liquid membrane of diol in vegetable oil

  • Hossain, Md. M.;Maraqa, M.A.
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.19-34
    • /
    • 2017
  • Boron exists in dilute concentrations in sea water, ground water and waste waters. Reactive liquid extraction can be used for removing boron to make the treated water suitable for drinking and irrigation, with its final concentration less than 0.5 ppm. The results of equilibrium experiments are reported on the removal of boron using 2-butyl-2-ethyl-1, 3-propanediol (BEPD as a nonionic carrier) in sunflower oil, a non-traditional solvent. The results of removal of boron from aqueous solutions in the concentration range 0.5-20 ppm are presented. It is shown that this new liquid membrane system, is able to remove boron from ground waters at their natural pH of 6-8 (without any chemical addition for pH adjustments). The removal efficiency is good when the process is upgraded to a hollow-fibre membrane contactor and approximately 45% boron can be removed in a single-stage contact. There are additional advantages of this new approach that includes reduced operational health and safety and environmental issues. The results reported here provide guidelines to the development of boron removal process using renewable, biodegradable, safe and cheap solvent system such as sunflower oil.

A Study on the Preparation of High Purity Silicic Acid by Solvent Extraction from Sodium Silicate (규산 나트륨으로부터 유기 용매 추출에 의한 고순도 규산 제조에 관한 연구)

  • Rho, Jae-Seong;Hong, Seong-Su;Chung, Hung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.802-808
    • /
    • 1996
  • Silicic acid(SA) was extracted with organic solvents from aqueous sodium silicate solutions acidified with dilute sulfuric acid. Tetrahydrofuran(THF), isopropyl alcohol and acetone were used as organic solvents. The extraction degree of Si and the removal efficiency of Na is determined according to kinds of solvent and the mixing ratios of solvent, sodium chloride and $H_2O$. Optimum conditions for the preparation of high purity SA were THF as an organic solvent, volume ratio of organic solvent/SA : 1 (organic solvent 10ml/10ml SA) and the amount of NaCl addition 2.5g/10ml SA. The extraction degree of Si and the removal efficiency of Na at that point were 86.2% and 99.95% respectively and the purity of SA was 99.96%.

  • PDF

Effect of Dodecylbenzene Sulfonic Acid on the Behavior of Asphaltene Aggregation in a Solvent Deasphalting System

  • Liu, Lingyu;Go, Kang Seok;Nho, Nam Sun;Kim, Kwang Ho;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.14-23
    • /
    • 2018
  • The effect of dodecylbenzene sulfonic acid (DBSA) with different addition amount of DBSA ($M_{DBSA}$), temperatures and solvent-to-oil ratio (SOR, v/v) on asphaltene aggregation in a solvent deasphalting system was investigated. Increasing the $M_{DBSA}$ at SOR 10 and $55^{\circ}C$ caused the asphaltene removal ratio (ARR) to increase first, then maximize at 1 wt% of $M_{DBSA}$ and then decrease continuously. Based on the SARA (saturate, aromatic, resin, asphaltene) composition, the adsorption amount of DBSA on the asphaltene surface and the self-aggregation of the DBSA, the reason for the change in ARR with $M_{DBSA}$ was found due to the adsorption mechanism. In addition, the asphaltene-resin-DBSA colloidal size confirmed the change of adsorption behavior between the asphaltene and DBSA. Based on the results of this study, a hypothetical adsorption mechanism of DBSA on asphaltene aggregation in the solvent deasphalting system was conceived of and proposed.

Experimental Study on Poultices Applying to Remove Fixative (Paraloid B72) on Earthen Mural Painting

  • Lee, Kyeong Min;Moon, Hye Young;Yu, Yeong Gyeong;Kim, Soon Kwan
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.569-580
    • /
    • 2018
  • The possibility of applying poulticing was studied for removing Paraloid B72, a resin used for fixing an earthen mural painting. Five types of poultices were selected from clay and gel types, and acetone, ethanol, and methyl ethyl ketone(MEK) were used as mixed solvents. The possibility of mixing between the poultice and solvent was investigated, and then the spreadability, fluidity, acidity, drying properties, and solubility of the poultices were examined to confirm the characteristics. A poultice agent, which is suitable for applying to a mural painting, was selected and applied to a painting layer sample coated with Paraloid B72. As a result, all painting layers were good condition at under 50% of the solvent. The removal efficiency of Paraloid B72 was more effective when most of the solvents were used at 50%, rather than at 25%. However, it is difficult to mix 50% of MEK and ethanol with the gel-type poultices. When used at 25%, the removal performance was poorer than that at 50%, but the mixing with all the poultices was successful. In addition, the adsorption and removal power of the gel-type poultice were better than those of the clay-type, but the latter was expected to be more suitable in short-time cases due to its high drying speed. The results of this study show that the dissolution performance varies depending on the poultices and solvents. Hence, the poultice and solvent should be selectively applied, considering the fixative of the mural to be removed.

Ethanol-pretreated Drying of (+)-dihydromyricetin for Removal of Residual Solvents (잔류 용매 제거를 위한 (+)-dihydromyricetin의 에탄올 전처리 건조)

  • Lee, Hee-Gun;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.237-242
    • /
    • 2022
  • In this study, a drying method that can effectively remove residual solvent from (+)-dihydromyricetin was developed. Residual acetone concentration was efficiently removed below ICH-specified value (5,000 ppm) by simple rotary evaporation with ethanol pretreatment. In addition, the residual ethanol met the ICH-specified value (5,000 ppm) by simple rotary evaporation through the addition of water, and the residual moisture also met the specified value (<4%) for active pharmaceutical ingredients. At all the drying temperature (35, 45, and 55 ℃), a large amount of the residual solvent was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. Removal of residual solvent by ethanol pretreatment was shown to be related to high vapor pressure of acetone-ethanol mixture and hydrogen bonding between acetone and ethanol.

Oil Extraction from Nannochloropsis oceanica Cultured in an Open Raceway Pond and Biodiesel Conversion Using SO42-/HZSM-5 (Open raceway pond에서 배양된 Nannochloropsis oceanica로부터 오일 추출 및 SO42-/HZSM-5를 이용한 바이오디젤 전환)

  • Ji-Yeon Park;Joo Chang Park;Min-Cheol Kim;Deog-Keun Kim;Hyung-Taek Kim;Hoseob Chang;Jun Cheng;Weijuan Yang
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, microalgal oil was extracted from Nannochloropsis oceanica cultured in an open raceway pond and converted into biodiesel using a solid acid catalyst. Microalgal oil was extracted from two types of microalgae with and without nitrogen starvation using the KOH-solvent extraction method and the fatty acid content and oil extraction yield from each microalgae were compared. The fatty acid content of N. oceanica was 184.8 mg/g cell under basic conditions, and the oil content increased to 340.1 mg/g under nitrogen starvation conditions. Oil extraction yields were 90.8 and 95.4% in the first extraction, and increased to 97.5 and 98.8% after the second extraction. Microalgal oil extracted by KOH-solvent extraction was yellow in color and had reduced viscosity due to chlorophyll removal. In biodiesel conversion using the catalyst SO42-/HZSM-5, solvent-extracted oil showed a FAME content of 4.8%, while KOH-solvent-extracted oil showed a FAME content of 90.4%. Solid acid catalyst application has been made easier by removal of chlorophyll from microalgal oil. The FAME content increased to 96.6% upon distillation, and the oxidation stability increased to 11.07 h with addition of rapeseed biodiesel and 1,000 ppm butylated hydroxyanisole.

Optimization of β-Cyclodextrin Recycling Process for Cholesterol Removal in Cream

  • Kwak, H.S.;Suh, H.M.;Ahn, J.;Kwon, H.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.548-552
    • /
    • 2001
  • This study was designed to find optimum conditions of four different factors (ratio of solvent to cholesterol-$\beta$-cyclodextrin complex, mixing speed, mixing temperature, and mixing time) for cholesterol dissociation in cream. Using the ratio of 6 to 1 (solvent to the complex) showed the highest cholesterol dissociation rate (82.50%) when mixed at 100 rpm at $50^{\circ}C$ for 1 h. Mixing speed did not significantly affect the cholesterol dissociation. Also, mixing time appeared to be insignificant. The optimum mixing temperature was $50^{\circ}C$ and mixing at $40^{\circ}C$ resulted in a significantly lower rate, compared with that at $50^{\circ}C$. In a subsequent experiment, using recycled $\beta$-cyclodextrin only showed 75.07% of cholesterol removal in cream, while the mixture of recycled to unused $\beta$-CD with the ratio of 6 to 4 increased cholesterol removal to 95.59%, which is highly close to that of 100% unused $\beta$-CD.