• Title/Summary/Keyword: Solvent Decomposition

Search Result 125, Processing Time 0.021 seconds

Studies on Formation of Passivation Film on KMFC Anode with Initial Charge Temperature (탄소 부극에서 초기 충전온도별 부동태 피막 형성에 대한 연구)

  • Park, Dong-Won;Kim, Woo-Seong;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.507-512
    • /
    • 2005
  • When carbon electrode is used as an anode in Li ion battery, passivation film forms on the electrode surface during the initial charge process due to so called Solid-Electrolyte Interphase (SEI). The passivation film formed by solvent decomposition during the initial charge process affects charge/discharge capacity. In this paper, 1 M $LiPF_6,EC:DEC$ (1 : 1, volume ratio) electrolyte with $Li_2CO_3$, at various temperatures, the electrochemical characteristics of passivation film formed on Kawasaki Mesophase Fine Carbon electrode surface were investigated by using chronopotentiometry, cyclic voltammetry, and impedance spectroscopy. Experimental observations indicated that as solvent decomposition occurred, the decomposition voltage was strongly dependent on ionic conductivity, which was low in the process at low temperature. The impedance of passivation film formed during the initial charge process, were dependent on the temperature.

Thermal Decomposition Characteristics of Ethyl Methacrylate and Styrene Copolymer

  • Kwon, Jae Beom;Lee, Nae Woo;Kim, Nam Seok;Park, Keun Hok;Seul, Soo Duk
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • Thermal decomposition characteristics of ethyl methacrylate (EMA) and Styrene (St.) copolymer was investigated with synthesis at 8$0^{\circ}C$ in a continuous stirred tank reacto (CSTR) using toluene and benzoyl peroxide(BPO) as solvent and initiator, respectively. The thermal decomposition was considered to be side scission at below 30$0^{\circ}C$ and estimated 2nd-order reaction kinetics of EMA/St. copolymer. The activation energies of decomposition on this copolymers were in the ranges of 38-43 kcal/mol for EMA/St. and a good additivity rule was observed in each composition. The thermogravimetric trace curves agreed well with the theoretical calculation.

Noise Suppression of NMR Signal by Piecewise Polynomial Truncated Singular Value Decomposition

  • Kim, Daesung;Youngdo Won;Hoshik Won
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.2
    • /
    • pp.116-124
    • /
    • 2000
  • Singular value decomposition (SVD) has been used during past few decades in the advanced NMR data processing and in many applicable areas. A new modified SVD, piecewise polynomial truncated SVD (PPTSVD) was developed far the large solvent peak suppression and noise elimination in U signal processing. PPTSVD consists of two algorithms of truncated SVD (TSVD) and L$_1$ problems. In TSVD, some unwanted large solvent peaks and noises are suppressed with a certain son threshold value while signal and noise in raw data are resolved and eliminated out in L$_1$ problem routine. The advantage of the current PPTSVD method compared to many SVD methods is to give the better S/N ratio in spectrum, and less time consuming job that can be applicable to multidimensional NMR data processing.

  • PDF

Synthesis of Copper Nanoparticle by Multiple Thermal Decomposition and Electroless Ag Plating (복합적 열분해법을 이용한 구리 나노분말의 합성 및 무전해 은도금에 관한 연구)

  • PARK, JEONGSOO;KIM, SANGHO;HAN, JEONGSEB
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • To synthesize copper nanoparticle a thermal decomposition was adopted. And to solve the problem of surface oxidation of the synthesized copper powder an electroless Ag plating method was used. The size and shape of synthesized Cu nanoparticle were affected by the size of copper oxalate used as a precursor, reaction solvent, reaction temperature and amount of reducing agent. Especially reaction solvent is dominant factor to control shape of Cu nano-particle which can have the shapes of sphere, polygon and rod. In case of glycerol, it produced spherical shape of about 500 nm in size. Poly ethylene produced uniform polygonal shape in about 700 nm and ethylene glycol produced both of polygon and rod having size range between 500 and 1500 nm. The silver coated copper powder showed a high electrical conductivity.

Topological Analysis on the Spinodal Decomposition and Interfacial Tension of Polymer-Solvent Systems

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.269-277
    • /
    • 1995
  • A topological theory has been introduced to extend the theory of Balsara and Nauman to evaluate the entropy of in homogeneous polymer solutions. Previous theories have considered only the terms about the displacement of junction points, while the present theory has obtained a more complete expression for the entropy by adding the topological interaction terms between strands. There have been predicted the characteristics of the spinodal decomposition and the interfacial tension of polymer solutions from the resultant expression. It is exposed that the theoretically predictive values show good agreement with the experimental data for polymer solutions.

Thermal Decomposition of Copolymers of Butyl methacrylate and Styrene Produced in a CSTR

  • Kim, Duck-Sool;Kim, Nam-Seok;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.273-280
    • /
    • 2002
  • Thermal decomposition of the copolymer of butyl methacylate(BMA) with styrene(St) was investigated. The copolymer Was obtained at 80 $^{\circ}C$ in a continuous stirred tank reactor(CSTR) using toluene and benzoyl peroxide(BPO), as solvent and initiator, respectively. The reactor volume was 0.3 liters and residence time was 3 hours. The thermal decomposition followed the second order kinetics for BMA/St copolymer. The activation energies of thermal decompositon were in the ranges of 38 ${\sim}43$ kcal/mol for BMA with St copolymer and a good additivity rule was observed with the composition of copolymer. The thermogravimetric trace curve agreed well with the theoretical calculation.

Effects of Co-solvent on Passivation Film of Lithium Surface (리튬 표면의 부동태 피막에 미치는 공용매의 영향)

  • Kang, Jihoon;Jeong, Soonki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.305-310
    • /
    • 2014
  • This study examined the morphological changes in lithium surface immersed in 1mol $dm^{-3}$ (M) $LiPF_6 $ dissolved in propylene carbonate (PC) containing different 1,2-dimethoxyethane (DME) concentrations as a co-solvent. A passivation film was formed on the surface of lithium metal by electrolyte decomposition. The passivation film formation reactions were significantly affected by the amount of co-solvent, DME, in electrolyte solution. A stable film was obtained from the 1 M $LiPF_6 $ / PC:DME (67:33) solution in which lithium electrode showed good electrochemical performances. Atomic force microscope (AFM) and electrochemical impedance spectroscopy (EIS) results revealed that there were no direct correlations between changes in the surface morphology of lithium metal and the resistance behavior of its passivation film.

Properties of Capacity on Carbon Electrode in EC:MA Electrolytes - I. Effect of Mixing Ratio on the Electrochemical Properties - (EC:MA 혼합전해질에서 카본 전극의 용량 특성 - I. 전기화학적 특성에 대한 혼합비의 영향 -)

  • Park, Dong-Won;Kim, Woo-Seong;Son, Dong-Un;Kim, Sung-Phil;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.183-187
    • /
    • 2006
  • The choice of solvents for electrolytes solutions is very important to improve the characteristics of charge/discharge in the Li-ion battery system. Such solvent systems have been widely investigated as electrolytes for Li-ion batteries. In this paper, the electrochemical properties of the solid electrolyte interphase film formed on carbon anode surface and the solvent decomposition voltage in 1 M LiPF6/EC:MA(x:y) electrolyte solutions prepared from the various mixing volume ratios are investigated by chronopotentiometry, cyclic voltammetry, and impedance spectroscopy. As a result, the solvent decomposition voltages are varied with the ionic conductivity of the electrolyte. Electrochemical properties of the passivation film were different, which are dependent on the mixture ratio of the solvents. Therefore, the most appropriate mixing ratio of EC and MA as a solvent in 1 M $LiPF_6/(EC+MA)$ system for Li-ion battery is approximately 1:3 (EC:MA, volume ratio).

Decomposition of Hazardous Gaseous Substances by Discharge Plasma (방전 프라즈마 화학반응을 이용한 유해물질의 분해)

  • 우인성;황명환;산외번장
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.79-83
    • /
    • 1996
  • In this study, in attempt to develop a new application technique of discharge plasma, we employed a kind of discharging method called SPCP ( short for Surface discharge induced Plasma Chemical Process). Applications of SPCP have been widely used for years. Compact ozonizers to deodorize household equipments like refrigerators we a part of such applications. We took advantages of the compactness and durability of the SPCP electrode to set up an experimental apparatus for decompositing vapor of aromatic hydrocarbons such as toluene, benzene and xylenes, which are major substances given off In painting or washing processes and aggravate working conditions. Results obtained from this study are summarized as follows. 1) Aromatic hydrocarbon vapors of up to 2,000ppm were almost thoroughly decomposed at the flow rate of 4ℓ/min or lower under the discharge with electric power of 400 Watts. 2) In dry air, as the decomposition progresses, tar-like substance deposits on the discharging areas, which deteriorated the decomposition rate in the end. This substance, however, was almost thoroughly removed by keeping discharge in dry air containing no solvent vapor.

  • PDF

Studies on Thermal Decomposition of Barium Titanyl Oxalate by Factor Analysis of X-Ray Diffraction Patterns

  • Seungwon Kim;Sang Won Choi;Woo Young Huh;Myung-Zoon Czae;Chul Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.38-42
    • /
    • 1993
  • Factor analysis was applied to study the thermal decomposition of barium titanyl oxalate (BTO) which is used as the precursor of barium titanate. BTO was synthesized in $H_2O$ solvent and calcined at various temperatures. The X-ray diffraction patterns were obtained to make the data matrix of peak intensity vs. 2${\theta}$. Abstract factor analysis and target transformation factor analysis were applied to this data matrix. It has been found that the synthesized BTO consists of the crystals of $BaC_2O_4{\cdot}0.5H_2O\;and\;BaC_2O_4{\cdot}2H_2O$ as well as the amorphous solid of TiO-oxalate. The results also indicate that the BTO was transformed via $BaCO_3\;to\;BaTiO_3\;and\;Ba_2TiO_4$ during the thermal decomposition.