• 제목/요약/키워드: Solution-diffusion Model

검색결과 272건 처리시간 0.021초

토양수분(土壤水分) 분포(分布)에 따른 토양내(土壤內) 양수분(養水分) 이동(移動) 모형(模型) -I. 불포화(不飽和) 토양(土壤)에서 용질(溶質)의 이동지연(移動遲延)과 수리동적(水理動的) 분산계수(分散係數)의 측정(測定) (Soil Water and Nutrient Movement Model Under Different Soil Water Conditions -I. Determination of Retardation and Hydrodynamic Dispersion Coefficient of Solute of an Unsaturated Sandy Loam Soil)

  • 정영상;우덕기;임형식
    • 한국토양비료학회지
    • /
    • 제23권1호
    • /
    • pp.8-14
    • /
    • 1990
  • 토양수분함량(土壤水分含量)이 다른 조건(條件)에서 물이 이동(移動)할 때 동반(同伴)되는 용질(溶質)의 이동특성(移動特性)을 결정(決定)하는 지연계수(遲延係數)와 수리동적(水理動的) 분산계수(分散係數)를 수학적(數學的)으로 해석(解析)하고 일차원수평계(一次元水平系)의 사양토(砂壤土)에서 실험적(實驗的)으로 측정(測定)하였다. 용적밀도(容積密度)를 $1,350{\pm}50kg/m^3$인 사양토(砂壤土) 토양(土壤)에 수평(水平)으로 침투(浸透)되는 0.05% $CaSO_4$ 용액(溶液)의 수분전진(水分前進)을 Boltzman transform으로 나타내고 이를 표준(標準)으로 하였을 때 0.5% KCl, $CaCl_2$$KH_2PO_4$ 용액(溶液)의 용질전진(溶質前進)을 비농도(比濃度)로 표시(表示)하여 비교(比較)하였다. 용질농도(溶質濃度)의 분포(分布)와 수분분포(水分分布)로 부터 Laryea법(法)에 의하여 수리동적(水理動的) 분산계수(分散係數)를 계산(計算)하였다. 토양(土壤)-용액계(溶液系)에서 비반응성(比反應性) 용질(溶質)인 $Cl^-$의 전진(前進)은 물의 전진(前進)보다 늦었으며, 음(陰)ion 배제효과(排除效果)는 무시(無視)되었고 지연(遲延)은 초기수분함량(初期水分含量) ${\theta}_n$의 함수(函數)로 ${\theta}/({\theta}-{\theta}_n)$로 해석(解析)되었다. 토양입자(土壤粒子)에 의하여 흡착(吸着)이 일어나는 $K^+$, $Ca^{{+}{+}}$, $H_2PO^-_4$의 전진(前進)은 초기수분함량(初期水分含量)과 지연계수(遲延係數) R의 함수(函數)로 $\frac{1}{1+R}{\cdot}\frac{{\theta}}{{\theta}-{\theta}_n}$으로 해석(解析)되며 R치(値)는 $Cl^-$를 1.0으로 보았을 때 $K^+$는 0.64, 0.80 및 2.6이었다. Langmuir 등온흡착식(等溫吸着式)을 이용(利用)한 지연계수(遲延係數) 계산(計算)은 다소의 차이(差異)가 있었으나 적용가능성(適用可能性)이 있었다. 수분분포곡선(水分分布曲線)으로부터 산출(算出)된 물의 확산계수(擴散係數) $D({\theta})$는 초기수분함량(初期水分含量)에 관계(關係)없이 토양수분함량(土壤水分含量)과 단일지수함수관계(單一指數函數關係)로 표시(表示)되었다. $$log\;D({\theta})=13.448{\theta}-9.288$$ $Cl^-$의 수리동적분포계수(水理動的分布係數)는 수분함량(水分含量) 0.36 이상(以上)에서는 물의 확산계수(擴散係數)와 비슷하였고 그 이하(以下)에서는 급격히(急激)히 감소(減少)하여 수분함량(水分含量) 0.2부근에서 자기확산계수(自己擴散係數)와 비슷한 값을 보였다. $K^+$, $Ca^{{+}{+}}$$H_2PO^-_4$의 수리동적분산계수(水理動的分散係數)는 수분함량(水分含量) 0.38에서 각각(各各) $5.5{\times}10^{-6}$, $2.4{\times}10^{-6}$$7.1{\times}10^{-7}m^2/sec$의 값을 보였고 0.36% 이하(以下)의 수분함량(水分含量)에서 급격(急激)히 감소(減少)하였으며 감소(減少) 경향(傾向)은 $H_2PO^-_4$가 가장 심(甚)하였다.

  • PDF

AsO4로 치환된 슈베르트마나이트의 중금속 흡착 특성 (Heavy Metal Adsorpton on AsO4-Substituted Schwertmannite)

  • 김병기;김영규
    • 한국광물학회지
    • /
    • 제25권2호
    • /
    • pp.85-94
    • /
    • 2012
  • 산성광산배수에 존재하는 $AsO_4$는 슈베르트마나이트의 $SO_4$를 치환하여 강하게 흡착되고 이로 인하여 슈베르트마나이트가 쉽게 침철석으로 전이되지 않게 해준다. 이러한 슈베르트마나이트에 대하여 주요 중금속 흡착에 대한 연구는 일부 이루어져 있으나 실제 $AsO_4$로 치환된 슈베르트마나이트에 대한 흡착 특성에 대해서는 기존에 연구된 바가 없다. 본 연구에서는 $AsO_4$로 치환된 슈베르트마나이트에 대하여 Cu, Pb, Zn 등의 대표적인 중금속 세 종류에 대하여 각 중금속의 농도가 3, 10, 30, 100 mg/L에 대하여 pH 4와 6의 두 범위에서 시간에 따른 흡착 실험을 실시하였다. 흡착 실험 결과 모든 중금속에 대하여 pH 6인 경우 pH 4에 비하여 흡착량이 큰 범위로 증가하였다. 전체적인 흡착량에 있어서 두 pH 범위에서 모두 Pb가 가장 큰 흡착량은 보였으며 Cu와 Zn의 흡착량은 비슷하였다. 시간에 따른 흡착속도는 전체적으로 모든 농도에 대하여 시간이 증가하면서 흡착량은 증가하였으나 Zn의 경우 대부분의 흡착이 초기에 일어나 시간이 지나면서 뚜렷한 흡착의 증가는 일어나지 않았다. 이러한 흡착량 증가는 특히 고농도의 용액인 100 mg/L에서 그 증가하는 양상이 뚜렷하였다. 다양한 흡착속도 모델을 적용한 결과 $AsO_4$로 치환된 슈베르트마나이트에서 일어나는 중금속의 흡착속도는 아마도 확산에 의하여 주로 좌우되는 것으로 나타났다. 기존의 연구에서 순수한 슈베르트마나이트가 pH 6에서 세 중금속에 대하여 거의 비슷한 흡착량을 보이고 pH 4에서는 Cu와 Pb가 비슷하게 Zn보다 높은 흡착량을 보이는 것을 고려하면 본 연구 결과 $AsO_4$ 슈베르트마나이트는 확연하게 다른 흡착 경향을 보이고 이는 $AsO_4$가 슈베르트마나이트의 $SO_4$를 치환됨으로 인하여 슈베르트마나이트의 표면 및 흡착특성이 달라짐을 지시한다. 이는 산성광산배수에서 $AsO_4$의 흡착이 슈베르트마나이트의 안정성뿐만 아니라 각 중금속의 거동에도 큰 영향을 줄 수 있음을 보여준다.