• Title/Summary/Keyword: Solute distribution

Search Result 75, Processing Time 0.024 seconds

Effects of Niobium Microalloying on Microstructure and Properties of Hot-Dip Galvanized Sheet

  • Mohrbacher, Hardy
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • Niobium microalloying is effective in hot-rolled and cold-rolled steels by providing a fine-grained microstructure resulting in increased strength. To optimize the strengthening effect, alloy design and hot-rolling conditions have to be adapted. As a key issue the dissolution and precipitation characteristics of Nb are discussed in particular with regard to the run-out table conditions. It is then considered how the hot-rolled microstructure and the solute state of Nb interact with the hot-dip galvanizing cycle. The adjusted conditions allow controlling the morphology and distribution of phases in the cold-rolled annealed material. Additional precipitation hardening can be achieved as well. The derived options can be readily applied to produce conventional HSLA and IF high strength steels as well as to modern multiphase steels. It will be explained how important application properties such as strength, elongation, bendability, weldability and delayed cracking resistance can be influenced in a controlled and favorable way. Examples of practical relevance and experience are given.

Dissimilar Metal Welding of Inconel 600 and STS304 by a continuous wave Nd:YAG Laser (연속파형 Nd:YAG레이저를 이용한 Inconel 600와 STS 304의 이종금속용접)

  • Shin, Ho-Jun;Yoo, Young-Tae;Song, Seong-Wook
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1120-1125
    • /
    • 2004
  • Welding characteristics of STS304 stainless steel and Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. Alloy 600 being used in steam generator tubing of pressurized water reactor(PWR) exposed to some corrosion environment, stress corrosion cracking can occur on this material. Presented here are the results from a series of experiments in which dissimilar metal welds were made using the gas tungsten arc welding process with pure argon shielding gas. But It is well known that solidification cracking susceptibility of austenitic alloys depends on the solidification temperature range and amount/distribution of solute rich liquid that exists at the terminal stages of solidification. An experimental study was conducted to determine effects of welding parameters and to optimize those parameters that have the most influence on eliminating or reducing the extent welding zone formation at dissimilar metal welds.

  • PDF

Comparison of Particle-Size Distribution Models for Estimating Water Retention Characteristic (토양수분특성 추정을 위한 입자크기분포 모형들의 비교)

  • 황상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-114
    • /
    • 2002
  • Knowledge of soil water retention characteristic is essential for many problems involving water flow and organic solute transport in unsaturated soils. A physico-empirical approach based on the translation of the particle-size distribution (PSD) into a corresponding water retention curve has been accomplished by others using the concept that the pore-size distribution is directly related to PSD. This approach implies that details of a PSD curve may affect the estimation of water retention characteristic (WRC). To determine whether the WRC estimation using the Arya-Paris model could be affected by the selection of a PSD model, four PSD models with one to four fitting parameters were used. The Jaky model with only one fitting parameter had greater WRC estimation ability than other models with greater number of fitting parameters. The better performance of the Jaky model may be explained by the effect of soil structure in field soils.

A review of transient storage modeling for analyzing one-dimensional non-fickian solute transport in rivers (1차원 Non-Fickian 하천혼합 해석을 위한 하천 저장대 모델링 연구 동향)

  • Kim, Byunguk;Seo, Il Won;Kim, Jun Song;Noh, Hyoseob
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.263-276
    • /
    • 2024
  • Since the first introduction of one-dimensional transient storage modeling in the field of solute transport analysis in rivers, its application has notably expanded for various purposes, including for hydrology and geobiology over the past few decades. Despite strides in refining transient storage models, there remain unresolved challenges in simplifying complex river transport dynamics into concise formulas and a limited set of parameters. This review paper is dedicated to cataloging and assessing existing transient storage models, outlining the difficulties associated with model structures, parameters, and data, and suggesting directions for future research. We seek to enhance understanding of transient storage by highlighting the importance of continuously evaluating residence time distribution modeling, integrating hydrodynamic models, and using data with minimal assumptions. This paper would contribute to advance our comprehension of the transient storage process, offering insights into sophisticated modeling techniques, pinpointing uncertainty in parameters, and suggesting the necessary avenues for further study.

Dynamics of Carbon Sequestered in Concentric Layers of Soil Macroaggregates

  • Park, Eun-Jin;Smucker, Alvin J.M.
    • The Korean Journal of Ecology
    • /
    • v.28 no.4
    • /
    • pp.181-188
    • /
    • 2005
  • Methods used to study carbon sequestration by soil aggregates have often excluded the concentric spatial variability and other dynamic processes that contribute to resource accessibility and solute transport within aggregates. We investigated the spatial gradients of carbon (C) and nitrogen (N) from the exterior to interior layers within macroaggregates, $6.3\sim9.5$ mm, sampled from conventional tillage (CT) and no tillage (NT) sites of a Hoytville silt clay loam. Spatial gradients in C accumulation within macroaggregates were related to the differences in C dynamics by determining the sizes and the turnover rates of fast C and slow C pools in the concentric layers of aggregates. Aggregate exteriors contained more labile C and were characterized by greater C mineralization rates than their interiors in both management systems. In contrast, C in the interior layers of aggregates was more resistant in both systems. These results indicated the spatial differentiation of C dynamics within macroaggregates, i.e., exterior layers as a reactive site and interior layers as a protective site. Greater total C distribution in the exterior layers of NT aggregates indicated more influx of C from the macropores in interaggregate space than C. mineralization (net gain of C), whereas lower C distribution within the exterior layers of CT aggregates indicated net loss of C by greater C mineralization than C influx. We found total C increased approximately 1.6-fold by the conversion of CT soils to NT management systems for a period of 36 years. Differences in total accumulation and the spatial distribution of C within aggregates affected by management were attributed to the differences in aggregate stability and pore networks controlling the spatial heterogeneities of resource availability and microbial activity within aggregates.

Effect of a Magnetic Field on the Solute Distribution of Czochralski Single Crystal Growth (초크랄스키 단결정 성장에서 자기장이 용질분포에 미치는 영향)

  • Kim, Moo Gewi;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.388-397
    • /
    • 1999
  • Numerical simulations are carried out for the magnetic Czochralski single crystal growth system. It Is shown that a magnetic field significantly suppresses the convective flow and as the strength of magnetic field becomes to be stronger, the heat transfer in the melt is dominated by conduction rather than convection. By imposing a cusp magnetic field, the growth interface shape becomes convex toward the melt. When the axial magnetic field is imposed, there occurs an inversion of the interface shape with increase of the magnetic field strength. The oxygen concentration near the interface decreases with increasing cusp magnetic field strength while axial field causes an increase of an oxygen concentration at the central region and decrease of that at the edge of the crystal. The results show that the cusp magnetic field has advantages over an axial magnetic field In the radial uniformity of oxygen as well as in the additional degree of control.

InP crystal growth by modified SSD method (변형된 SSD법에 의한 InP결정 성장)

  • 송복식;정성훈;문동찬;김선태
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.291-297
    • /
    • 1995
  • The InP crystals have been grown by modified synthesis solute diffusion (SSD) method and its properties have been investigated. The crystals have been grown by lowering the crucible quartz for growth in the furnace and crystal growth rate is 1.8mm/day. The lattice constant a. of the grown crystals is 5.867.angs.. Etch pits density along growth direction of crystal changes from 3.0*10.sup 3/cm$\^$-2/ of first freeze part to 6.7*10$\^$4/cm$\^$-2/ of last freeze part and the radial direction of wafer shows nearly uniform distribution. The resistivity and the carrier concentration of the grown crystals are 1.43*10$\^$-1/.ohm.-cm, 7.7*10$\^$15/cm$\^$-3/ at room temperature, respectively. In the photolurninescence at 10K, the radiation transitions are observed by the near band edge recombination, a pair recombination due to Si donor - Zn acceptor and its phonon replica in the InP. The activation energy by Zn diffusion in undoped n-InP crystals is 1.22eV.

  • PDF

Investigation of Segregation Behavior in the Riser/Castings Junction of Heavy-section Steel Castings (대형주강 압탕부의 편석거동 고찰)

  • Kim, Ji-Tae;Park, Heung-Il;Kim, Woo-Yeol;Lee, Byung-Woo
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.130-136
    • /
    • 2010
  • Sulfide segregation behavior, characteristics of solidification microstructure and compositional distribution in the riser/castings junction of heavy-section main bearing support (MBS) steel castings were investigated; Sulfide streaks of A segregation were formed in the transitional region from columnar grain to coarse equiaxed grain and floated with aggregation of the dendritic free crystal. Solute segregation behaviors of elements Si, P and S were V shape negative segregation from the bottom of the castings to upper part of the riser with the reference of vertical center-line of the specimen block. Those of elements C and Mn were V shape negative segregation in the main body and A shape positive segregation in the riser of the casting. Just beneath the pipe shrinkage in the riser segregation ratio of each element was the highest, and that of S was 3.6 times higher, C 3.3 times, P 2.1 times, Si 1.6 times and Mn 1.0 times respectively. [Mn/S] ratio of the specimen block was distributed in the wide range of 20~275.

Preliminary Study on the Visualization and Quantification of Elemental Compositions in Individual Microdroplets using Solidification and Synchrotron Radiation Techniques

  • Ma, Chang-Jin;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Quantifying the solute composition of a cloud droplet (or a whole droplet) is an important task for understanding formation processes and heating/cooling rates. In this study, a combination of droplet fixation and SR-XRF microprobe analysis was used to visualize and quantify elements in a micro-scale droplet. In this study, we report the preliminary outcome of this experiment. A spherical micro-scale droplet was successfully solidified through exposure to ${\alpha}$-cyano-acrylate vapor without affecting its size or shape. An X-ray microprobe system equipped at the beam line 37XU of Super Photon ring 8 GeV (SPring-8) was applied to visualize and quantify the elemental composition in an individual micro-scale droplet. It was possible to reconstruct 2D elemental maps for the K and Cl contained in a microdroplet that was dispensed from the 10-ppm KCl standard solution. Multi-elemental peaks corresponding to X-ray energy were also successfully resolved. Further experiments to determine quantitative measures of elemental mass in individual droplets and high-resolution X-ray microtomography (i.e., 3D elemental distribution) are planned for the future.

QM/MM-MD 방법을 이용한 용액 속에서의 Potassium Thiocyanate의 Association/Dissociation Dynamics 연구

  • Nam, Hye-Rim;Ghosh, ManikKumer;Choe, Cheol-Ho
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.347-358
    • /
    • 2014
  • 본 논문에서는 양자 역학적 분자 동역학(Quantum Mechanical/Molecular Mechanical-Molecular Dynamics, QM/MM-MD)을 통해 수용액에 녹아 있는 Potassium Thiocyanate의 dynamics를 연구했다. Umbrella sampling technique을 활용하여 association/dissociation에 해당하는 Free energy surface를 구했다. 두 개의 Free energy minimum이 녹아 있는 두 이온의 center of mass 사이의 거리가 $4{\AA}$일 때와 $5{\sim}6{\AA}$ 부근일 때 나타났으며 $4{\AA}$일 때 더 안정 했다. 본 논문에서는 $4{\AA}$일 때를 Contact Ion Pair(CIP) $6{\AA}$일 때를 Dissociation Ion Pair(DlP)라고 칭했다. 이 minimum들이 무엇인 지를 밝혀 내기 위해 추가 연구를 수행하였다. Free energy 상에서 가장 안정 할 때(CIP) solute인 Potassium thiocyanate의 구조를 살펴 봤더니 Potassium ion은 Thiocyanate ion의 Sulfur보다 Nitrogen side를 선호하였다. 그 원인을 알아보기 위해 salvation shell의 구조를 Radial distribution function을 통해 살펴 봤더니 물 분자가 Nitrogen보다 Sulfur와 더 강한 상호작용을 하고 있었다. 그로 인해 Potassium ion이 Nitrogen을 선호한단 결과가 나온 것이다. 한편, 두 번째 minimum은 물 분자가 Potassium 이온과 Thiocyanate 이온 사이에 flexible하게 bridging을 하는 구조였다. 또한 단순 양자 계산을 통해서도 비슷한 구조를 얻을 수 있었다. 그러나 QM 계산은 0K에서 수행하는 것이기 때문에 엔트로피 효과가 없는 계산이지만 본 연구는 온도 300K로 실제 용매와 가깝게 수행함으로써 고정되어 있는 구조가 아니라 엔트로피와 엔탈피가 균형적으로 존재하는 실제 용액 속에서의 구조를 처음으로 보여주는 것이다.

  • PDF