• Title/Summary/Keyword: Soluble and Insoluble Polymer

Search Result 54, Processing Time 0.022 seconds

Production and properties of cross-linked recombinant pro-resilin: an insect rubber-like biomaterial

  • Kim, Mi-Sook;Elvin, Chris;Lyons, Russell;Huson, Mickey
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.256-256
    • /
    • 2006
  • The design and synthesis of novel biomolecular materials, based on mimicking the properties of molecules found in nature, is providing materials with unusual properties. Resilin serves as an energy storage material in insects and facilitates flight, jumping (in fleas, froghoppers etc) and sound production (cicadas, etc). Resilin is initially produced as a soluble protein and in its mature form is crosslinked through formation of dityrosine units into a very large insoluble polymer. In the present study, we have synthesized a recombinant form of resilin that can be photochemically cross-linked into a resilient, rubber-like biomaterial that may be suitable for spinal disc implants. This material is almost perfectly elastic and its fatigue lifetime in insects must be >500 million cycles.

  • PDF

Preparation and Thermal Properties of Enaryloxynitriles End-Capped Polymer Precursors

  • Gil, Dae Su;Gong, Myeong Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.557-561
    • /
    • 2000
  • Various enaryloxynitriles-terminated reactive polymer precursors containing rigid aromatic units were prepared from various diamines and 1-(p-formylphenyl)-1-phenyl-2,2-dicyanoethene (1). Arylate end-capped model compounds linked with azomethine bond were also prepared by reacting p-formylphenyl benzoate with diamines to compare the curing ability. The oligomers were highly soluble in polar aprotic solvents such as N,N-dimethylformamide, dimethylsulfoxide and N-methyl-2 -pyrrolidinone. They generally showed an exothermic curing process between $280-350^{\circ}C$, attributable to the thermal crosslinking of the dicyanovinyl group in DSC analysis, and no weight loss at curing temperature. Upon heating the polymer precursors, heat-resistant and insoluble network polymers were obtained. Thermogravimetric analyses of the precursors containing rigid aromatic units showed thermal stability with a 77-92% residual weight at $500^{\circ}C$ under nitrogen.

Synthesis and Optical Properties of Poly(2-ethynylpyridinum bromide) Having Glycidyl Functionality

  • Gal, Yeong-Soon;Lee, Won-Chul;Lee, Sang-Seob;Bae, Jang-Soon;Kim, Bong-Shik;Jang, Sang-Hee;Jin, Sung-Ho;Park, Jong-Wook
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.131-136
    • /
    • 2000
  • The synthesis of poly(2-ethynylpyridine) having glycidyl functionality was performed by the direct polymerization of 2-ethynylpyridine and epibromohydrin under mild reaction conditions without any initiator and catalysts. The polymerization proceeded well to give the resulting poly(2-ethynylpyridinium bromide) with a glycidyl functionality having relativity high molecular weight in high yields. The polymer structure was characterized by various instrumental methods to have the conjugated polymer backbone structure having glycidyl functionality. This ionic polymer was completely soluble in water, methanol, DMF, DMSO, and N,N-dimethylacetamide, but insoluble in THF, toluene, acetone, nitrobenzene, and n-hexane. This polymer system exhibited the UV-visible absorption around 300 and 520 nm and red photoluminescence spectrum around 725 nm.

  • PDF

Synthesis and Properties of Poly[2-ethynyl-N-(p-hydroxyphenylethyl) pyridinium bromide] and Poly [2-ethynyl-N-(p-hydroxyphenylethyl) pyridinium tetraphenylborate]

  • Gal, Yeong-Soon;Jin, Sung-Ho;Lee, Won-Chul;Kim, Sang-Youl
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.407-412
    • /
    • 2004
  • A new hydroxyl group-containing conjugated ionic polymer, poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium bromide], was synthesized by the activated polymerization of 2-ethynylpyridine with p-(2-bromoethyl) phenol without any additional initiator or catalyst. The polymerization proceeded well to give a moderate yield (65%) of polymer at a reaction temparature of 90$^{\circ}C$. Another polymer, poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium tetraphenylborate], was readily prepared by the ion-exchange reaction of poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium bromide] with sodium tetraphenylborate. These polymers were completely soluble in organic solvents such as DMF, DMSO, and acetone, but insoluble in water and ether. Instrumental analyses, such as NMR, IR, and UV-Vis spectroscopies, indicated that the new materials have conjugated polymer backbone systems with the designed substituents and counter anions. X-Ray diffraction analyses of the polymers indicated that they were mostly amorphous.

Phenol Removal Using Horseradish Peroxidase(HRP)-Mediated Polymerization Reaction in Saturated Porous Media (다공성 포화 매질에서 효소 중합반응을 이용한 페놀 제거)

  • Kim, Won-Gee;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.984-991
    • /
    • 2008
  • This paper reports experimental results, demonstrating the feasibility of horseradish peroxidase(HRP) and H$_2$O$_2$ to reduce phenol transport in saturated porous media. A laboratory-scale packed column reactor(ID: 4.1 cm, sand-bed height 12 cm) column was utilized to simulate injection of HRP and H$_2$O$_2$ into an aquifer contaminated with phenol. Effluent concentrations of phenol and polymerization products were monitored before and after enzyme addition under various experimental conditions(enzyme dose: 0$\sim$2 AU/mL, [ionic strength]: 5$\sim$100 mM, pH: 5$\sim$9). The concentration of phenol in the column effluent was found to decrease by nearly 90% in the presence of HRP(2 AU/mL) and H$_2$O$_2$ in the continuous flow system at pH 7 and ionic strength 20 mM. The influent phenol was converted in the system to insoluble precipitate, which deposited in pore spaces. The remains were discharged as soluble oligomers. About 8% of total pore volume in column system was decreased by deposition of polymer produced.

Dehydrocoupling of Bis(1-sila-3-butyl)benzene and 2-Phenyl-1,3-disilapropane to Polymers Using Zirconocene Combination Catalysts

  • Lee, Jun;Kim, Jong-Hyun;Mo, Soo-Yong;Woo, Hee-Gweon;Kim, Do-Heyoung;Jun, Jin
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.177-181
    • /
    • 2011
  • The catalytic dehydrocoupling of bis(1-sila-3-butyl)benzene 1 and 2-phenyl-1,3-disilapropane 2 by $Cp_2ZrCl_2$/Red-Al and $Cp_2ZrCl_2$/n-BuLi was reported to compare their catalytic efficiency. The dehydrocoupling of monomeric silanes 1 with the $Cp_2ZrCl_2$/Red-Al and $Cp_2ZrCl_2$/n-BuLi combination catalysts produced two phases of polymers: one is a highly cross-linked insoluble solid, and the other is noncross-linked or slightly cross-linked soluble oil and could be a precursor for the solid polymer. The dehydrocoupling of 2 with the $Cp_2ZrCl_2$/n-BuLi combination catalyst similarly produced two phases of polymers. By contrast, the catalytic reaction of 2 with the $Cp_2ZrCl_2$/Red-Al combination catalyst produced a soluble polymer via redistribution/dehydrocoupling process.

Synthesis and Characterization of Fluorinated Polybenzoxazole Copolymers

  • Sohn, Jeong Sun;Park, A Ram;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.175-183
    • /
    • 2015
  • A series of fluorinated aromatic poly(hydroxyamide)s (PHAs) were synthesized by direct polycondensation of diacides containing 2,6-dimethylphenoxy group and quinoxaline ring in the main chain with 2,2-bis-(3-amino-4-hydroxyphenyl) hexafluoropropane. The PHAs had relatively low inherent viscosities in the range of 0.35~0.43 dL/g at $35^{\circ}C$ in DMAc solution. All PHAs exhibited excellent solubility in aprotic solvents such as NMP, DMAc, DMF and DMSO as well as in common organic solvents such as pyridine, THF, and m-cresol at room temperature. However, the poly(benzoxazole)s (PBOs) were quite insoluble in all organic solvents except partially soluble in concentrated sulfuric acid. The PBOs showed glass transition temperatures between 233 and $284^{\circ}C$ by DSC and maximum weight loss temperatures in the range of $536-546^{\circ}C$ by TGA.

The Molecular Complexes (ⅩI). The Complexes of Toluidines and N-Methyltoluidines with Iodine in Carbon Tetrachloride$^*$

  • Lee, Dong-Choo;Lee, Ki-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.3
    • /
    • pp.101-104
    • /
    • 1980
  • A sequential copolypeptide with repeating unit sequences, in which a glycyl residue is flanked progressively by two ${\gamma}$-benzyl-L-glutamyl residues, has been synthesized by poymerizing p-nitrophenyl ester of ${\gamma}$-benzyl-L-glutamyl-${\gamma}$ -benzyl-L-gutamyl-glycine. Polymers obtained were characterized by viscosity and infra-red spectral data. The highest molecular weight obtained was 21,000. Molecular conformation in solid state was found to be a mixed form of and |${\beta}$-structure. Polymers obtained were insoluble in the most of the organic solvents except in a strong acid like dichloroacetic acid, but in binary mixtures of solvents such as dichloroacetic acid-ethylene dichloride or dichloroacetic acid-chloroform, they were soluble within certain ranges of solvent compositions.

Thermally Crosslinkable Second-Order Nonlinear Optical Polymer Using Pentaerythritol tetrakis(2-mercaptoacetate) as Crosslinker

  • 한관수;심상연;이용석;장웅상;김낙중
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1168-1171
    • /
    • 1998
  • Two kinds of second-order nonlinear optical copolymers were prepared by the copolymerization of the vinyl monomers containing NLO chromophore, methacrylic acid, and methyl methacrylate or butyl methacrylate. Glass transition temperatures (Tg of copolymers were around 130 ℃. The copolymers were soluble in common organic solvents such as tetrahydrofuran (THF), cyclohexanone, and N,N-dimethylformamide (DMF). The crosslinked copolymer was obtained by thermal treatment using pentaerythritol tetrakis(2-mercaptoacetate) as a crosslinker and became insoluble in tetrahydrofuran (THF) and N,N-dimethylformamide (DMF). Poling was carried out at 120 ℃ for 20 min and identified with UV-Vis spectroscopy. Electro-optic coefficient (r33) measurement showed a value of 35 pm/V for polymer 2 at 633 nm. Temporal stability of copolymers was improved owing to the crosslinked network, which was successfully obtained at 170 ℃ for 30 min after poling.

Syntheses and Characterization of PBO Precursors Containing Dimethylphenoxy and/or MPEG Pendant Groups (Dimethylphenoxy와 MPEG 팬던트 그룹을 갖는 폴리벤즈옥사졸 전구체의 합성 및 특성)

  • Yoon Doo-Soo;Choi Jae-Kon;Jo Byung-Wook
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.493-500
    • /
    • 2005
  • Polyhydroxyamides(PHAs) having poly(ethylene glycol)methyl ether (MPEG) and/or dimethylphenoxy pendant groups were synthesized by solution polycondensation at low temperature. The inherent viscosities of the PHAs measured at $35^{\circ}C$ in DMAC or DMAc/LiCl solution were in the range of $0.51\~2.31dL/g$. This precursor polymers were studied by FT-IR, $1H-NMR$, DSC, and TGA. Solubility of the precursors with higher MPEG unit was increased, especially the polymer having MPEG $(M_n=1100)$ was soluble or partially soluble in ethanol, methanol, and water as well as aprotic solvents, but the PBOs were nearly insoluble in a variety of solvents. PHAs were converted to polybenzoxazoles (PBOs) by thermal cyclization reaction with heat of endotherm. In case of the precursors having MPEG nit, the precursor polymers with a higher $M_n$ were fully cyclized at a lower temperature than one with a lower $M_n$.