• Title/Summary/Keyword: Solitary wave interaction

Search Result 17, Processing Time 0.023 seconds

SPH simulation of solitary wave interaction with coastal structures

  • Cai, Guozhen;Luo, Min;Wei, Zhaoheng;Khayyer, Abbas
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.285-300
    • /
    • 2022
  • This paper adopts the Smoothed Particle Hydrodynamics (SPH) open-source code SPHinXsys to study the solitary wave interaction with coastal structures. The convergence properties of the model in terms of particle size and smoothing length are tested based on the example of solitary wave propagation in a flat-bottom wave flume. After that, the solitary wave interactions with a suspended submerged flat plate and deck with girders are studied. The wave profile and velocity field near the surface of the structures, as well as the wave forces exerted onto the structures are analyzed.

On the Interaction of a Solitary Wave and a Wave-Packet (고립파와 파도패킷의 상호작용)

  • Jong Eon Kim;Taek Soo Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.341-350
    • /
    • 2023
  • In this paper, numerical experiments are performed to examine the collision between a solitary wave and a wave-packet (dispersive wave) in shallow water. We attempt to introduce the improved Boussinesq equation governing the experiments, which is solved by using a semi-analytical approach, called Pseudo-parameter Iteration method(PIM). Using various numerical experiments, we have observed that the wave-packet (propagating dispersive wave) experiences a phase shift after collision with a solitary wave. This phenomenon may be considered as a nonlinear wave-wave interaction in shallow water.

Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders

  • Mo, Weihua;Liu, Philip L.F.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.20-28
    • /
    • 2009
  • In thus paper we validate a numerical model for wave-structure interaction by comparing numerical results with laboratory data. The numerical model is based on the Navier-Stokes (N-S) equations for an incompressible fluid. The N-S equations are solved by a two-step projection finite volume scheme and the free surface displacements are tracked by the volume of fluid (VOF) method The numerical model is used to simulate solitary waves and their interaction with a group of slender vertical piles. Numerical results are compared with the laboratory data and very good agreement is observed for the time history of free surface displacement, fluid particle velocity and wave force. The agreement for dynamic pressure on the cylinder is less satisfactory, which is primarily caused by instrument errors.

An Experimental Study on The Uncertainty of Suspended Sediment Pickup on Slope by Solitary Wave (고립파에 의한 경사면에서의 부유사 제승의 불확실성에 관한 실험적 연구)

  • Cho, Jae Nam;Jeong, Seok Il;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.61-67
    • /
    • 2017
  • Suspended sediment transport plays principal roles in morphological process of natural coastals. It is needed to understand the reason why interaction characteristics of solitary wave and suspended sediment. The present study shows that suspended sediment pickup derived on solitary wave celerity. The 2D prismatic open channel length is 12 m, width is 0.8 m, height is 0.75 m and slope is 1/6. Generation of solitary wave is used by rapidly opening the sluice gate. Bottom surface sediments are laid movable slope section by 0.03 m thickness and experimental sediments are used anathracite and jumoonjin sand. Techniques of suspended sediment pickup rate are designed equipment ASC(Absorptive Suspended sediment Collector). It could directly absorb 5 points suspended sediment by channel water depth. Solitary wave celerity is measued by ADV(Acoustic Doppler Velocimeter). Mounted two video cameras(Model No. : Sony, HDR-XR550) are used to image processing of suspended sediment concentration and turbidity. Suspended sediment pikcup rate(Einstein, 1950) is analyzed to nondimensionalization based on solitary wave celerity. The suspended sediment pickup rate is suggested that more effective plunging breaking type than spilling. The results indicates fundamental suspended sediment transport mechanism between solitary wave celerity and suspended sediment pickup based on laboratory experiments. Finally, the present study suggests that suspended sediment pickup rate by solitary wave is used only characteristics of sediment and solitary wave celerity.

Numerical Analyses on the Formation, Propagation, and Deformation of Landslide Tsunami Using LS-DYNA and NWT

  • Seo, Minjang;Yeom, Gyeong-Seon;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • Generally, tsunamis are generated by the rapid crustal movements of the ocean floor. Other factors of tsunami generation include landslides on coastal and ocean floor slopes, glacier collapses, and meteorite collisions. In this study, two numerical analyses were conducted to examine the formation, propagation, and deformation properties of landslide tsunamis. First, LS-DYNA was adopted to simulate the formation and propagation processes of tsunamis generated by dropping rigid bodies. The generated tsunamis had smaller wave heights and wider waveforms during their propagation, and their waveforms and flow velocities resembled those of theoretical solitary waves after a certain distance. Second, after the formation of the landslide tsunami, a tsunami based on the solitary wave approximation theory was generated in a numerical wave tank (NWT) with a computational domain that considered the stability/steady phase. The comparison of two numerical analysis results over a certain distance indicated that the waveform and flow velocity were approximately equal, and the maximum wave pressures acting on the upright wall also exhibited similar distributions. Therefore, an effective numerical model such as LS-DYNA was necessary to analyze the formation and initial deformations of the landslide tsunami, while an NWT with the wave generation method based on the solitary wave approximation theory was sufficient above a certain distance.

A Numerical Analysis of the Collision of Solitary Waves (고립파의 충동에 대한 수치해석)

  • Kim, Do-Young;Bai, Kwang-June;Chung, Sang-Kwon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.243-249
    • /
    • 2003
  • The head-on collision of two solitary waves are examined using a boundary element method. Attachment, detachment times and alplitudes and maximum run-up times and amplitudes are computed. Consolidation times show local minimum value if two waves are of equal amplitudes are colliding. Attachment times show local maximum value if the amplitudes of two waves are the same. The detachment time show local maximum if two wves are the same. The detachment amplitude show local minimum values if the amplitude e(=a/h) is greater than 0.3.

  • PDF

Numerical investigation of solitary wave interaction with a row of vertical slotted piles on a sloping beach

  • Jiang, Changbo;Liu, Xiaojian;Yao, Yu;Deng, Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.530-541
    • /
    • 2019
  • To improve our current understanding of tsunami-like solitary waves interacting with a row of vertical slotted piles on a sloping beach, a 3D numerical wave tank based on the CFD tool $OpenFOAM^{(R)}$ was developed in this study. The Navier-Stokes equations were employed to solve the two-phase incompressible flow, combining with an improved VOF method to track the free surface and a LES model to resolve the turbulence. The numerical model was firstly validated by our laboratory measurements of wave, flow and dynamic pressure around both a row of piles and a single pile on a slope subjected to solitary waves. Subsequently, a series of numerical experiments were conducted to analyze the breaking wave force in view of varying incident wave heights, offshore water depths, spaces between adjacent piles and beach slopes. Finally, a slamming coefficient was discussed to account for the breaking wave force impacting on the piles.

Simulation of Body Motion Caused by a Solitary Wave using the FDS-HCIB Method (FDS-HCIB법을 이용한 고립파에 의한 물체 운동 모사)

  • Shin, Sangmook;Kim, In Chul;Kim, Yong Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.265-273
    • /
    • 2014
  • Wave-body interaction is simulated using a developed code based on the flux-difference splitting scheme for immiscible and incompressible fluids and the hybrid Cartesian/immersed boundary method. A free surface is captured as a moving contact discontinuity within a fluid domain and an approximated Riemann solver is used to estimate the inviscid flux across the discontinuity. Immersed boundary nodes are identified inside an instantaneous fluid domain near a moving body, then dependent variables are reconstructed at those immersed boundary nodes based on interpolation along local normal lines to the boundary. Free surface flows around an oscillating cylinder are simulated and the computed wave elevations are compared with other reported results. The generation of a solitary wave by a moving wave-maker is simulated and the time histories of wave elevations at two different points are compared with other results. The developed code is applied to simulate body motion of an elastically mounted circular cylinder as a solitary wave passes the body. The force acting on an elastically mounted cylinder is compared with the force acting on a fixed cylinder. Grid independency of the computed body motion is established based on a comparison of results using three different-size grids.

Application of 3-D Numerical Wave Tank for Dynamic Analysis of Nonlinear Interaction between Tsunami and Vegetation (쓰나미-식생 비선형 상호작용의 동적해석을 위한 3차원 수치파동수조의 적용)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.831-838
    • /
    • 2016
  • The disaster preventing system using vegetation has been growing in the field of coastal engineering in recent years. To analyze wave and flow fields under nonlinear interactions between tsunami and vegetation, the purpose of this study is to evaluate newly-developed 3-D numerical wave tank including energy dissipation by tsunami-vegetation interaction based on existing N-S solver with porous body model. Comparing numerical results using mean drag coefficient and dynamic drag coefficient due to Reynolds number to existing experimental results it is revealed that computed results considering the dynamic drag coefficient are in good agreement with the laboratory test results for time-domain waveform. In addition, the calculated transmission coefficients of solitary waves in various vegetation densities and incident wave heights are also in good agreement with the experimental values. This confirms the validity and effectiveness of the developed 3-D numerical wave tank with the fluid resistance by vegetation.

Effects of Tsunami Waveform on Energy Dissipation of Aquatic Vegetation (쓰나미 파형이 수중식생의 에너지소산에 미치는 영향)

  • Lee, Woo-Dong;Park, Jong-Ryul;Jeon, Ho-Seong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • The present study numerically investigated the influence of the waveform distribution on the tsunami-vegetation interaction using a non-reflected wave generation system for various tsunami waveforms in a two-dimensional numerical wave tank. First, it was possible to determine the wave attenuation mechanism due to the tsunami-vegetation interaction from the spatial waveform, flow field, vorticity field, and wave height distribution. The combination of fluid resistance in the vegetation and a large gap and creates a vortex according to the flow velocity difference in and out of the vegetation zone. Thus, the energy of a tsunami was increasingly reduced, resulting in a gradual reduction in wave height. Compared to existing approximation theories, the double volumetric ratio of the waveform increased the reflection coefficient of the tsunami-vegetation interaction by 34%, while decreasing the transfer coefficient and energy attenuation coefficient by 25% and 13%, respectively. Therefore, the hydraulic characteristics of a tsunami is highly likely to be underestimated if the solitary wave of the approximation theory is applied for the tsunami.