• Title/Summary/Keyword: Solidified waste

Search Result 77, Processing Time 0.024 seconds

Radiolysis of Paraffin Encapsulation Wax (파라핀 고화체의 방사선적 가수분해)

  • Kim, Chang-Lak;Lee, Myung-Chan;Park, Won-Jae;Suk, Tae-Won;Burns William G.
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.4
    • /
    • pp.237-243
    • /
    • 1995
  • An estimate is made on the potential generation rate of H: from radiolysis of the Paraffin-wax encapsulant Proposed for the solidified liquid concentrate wasteform. The results show that the radiolytic Production of $H_2$ from paraffin-wax-encapsulated waste is dominated by the radiation energy released from $^{60}Co$. The radiolytic production of $H_2$ will proceed at an initial rate equivalent to aproximately $4.4{\times}10^2cm^3yr^1$ in 200 litre drums that are partly filled with 120 litres of encapsulated waste. The gas production rate will fall to a value of $7.2cm^3yr^1$ after 100 years. The lower flammable limit for $H_2$ in air will be reached in about 25 years and the lower explosive limit for $H_2$ in air would not be reached in 1000years. The timescale in which these safety-related limits are reached is strongly dependent on the level of filling of each waste drum. A reduction of the air space inside each drum would reduce the time required to reach the lower flammable limit.

  • PDF

An Experimental Study on the Compressive Strength Properties of Sulfur-solidified Materials using Bottom Ash Fine Aggregate (바닥재 잔골재를 활용한 유황고형화 성형물의 압축강도 특성에 대한 실험적 연구)

  • Hong, Bumui;Choi, Changsik;Yun, Jungho;Eom, Minseop;Jeon, Sinsung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.259-265
    • /
    • 2012
  • Differently from fly ash, the bottom ash produced from thermal power generation has been treated as an industrial waste matter, and almost reclaimed or was applied with the additive of the part concrete. Bottom ash has various problems to use with the aggregate. Bottom ash is lighter than typically the sand or the gravel and it's physical properties (compressive strength etc.) is somewhat low because of high absorptance. In order to manufacture the ash concrete, we used a bottom ash as a main material and a pure sulfur as a binder. In this study, fundamental research methods that vary the grain-size of bottom ash and the ratio of sulfur vs ash were investigated to improve the quality of ash concrete such as compressive strength. Bottom ash in this research which occurs from domestic 4 place power plants, was checked physical and chemical properties. The compressive strength seems the result which simultaneously undergoes an influence in content of the sulfur and Bottom ash grain-size. We got the result of the maximum 92 MPa. The compressive strength was high result for grain size below 1.2 mm and high sulfur content.

A Study on Isothermal Adsorption of VOCs onto Gypsum Mortar Incorporating Oyster Shell (굴패각 모르타르에의 휘발성 유기화합물 흡착에 대한 연구)

  • Kwon, Sung-Hyun;Cho, Daechul
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.134-139
    • /
    • 2013
  • VOCs such as formaldehyde and benzene in a control chamber were adsorbed onto gypsum incorporating oyster shell powder, which was solidified and dried. VOC was first exposed in air and then gypsum mortar was placed in the chamber for 180 min for adsorption. The mortar was prepared with 0, 10, 30, and 50% of oyster shell powder. Two initial concentrations of VOCs including formaldehyde were $27.7{\sim}28.5mg/m^3$ or $175{\sim}150{\mu}g/m^3$. We found out that the initial concentrations did not seem to make any difference in adsorption performance but higher oyster content strongly led to higher adsorption. We used a convection-diffusion-adsorption model to compare the experiment. The model which considers diffusion coefficients of adsorbates and affinity of the adsorbents well represented the experimental data with a fair agreement.

Hydration-Setting Property of Slaked Lime and Artificial Zeolite Synthesized with Top Water Sludge (정수슬러지로 합성한 인공제올라이트와 소석회의 수화응결특성)

  • La, Jung-Min;Choi, Duk-Jin;Kim, Min-Gil;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.122-128
    • /
    • 2010
  • On the international provision on prohibition of ocean dumping of waste, tap water sludge has been buried or recycled on th low value added product as landfill. Due to the tap water sludge having high inorganic content, differing from the sewage sludge, it is possible to use as a usable resource by suitable process. We have studied on hydro thermal processing of tap water sludge with phosphoric acid and finally synthesize a artificial zeolite having a deodorization property. To use it as a building material, it has to be solidification. This study is on the properties of artificial zeolite synthsized and solidification properties by various types of solidifier. It is showed that the slaked lime is the best on setting property and its optimum content is 30-60 weight proportion. Solid by solidified by slaked lime has low strength and excellent deodorization performance, so it is possible to use as a functional pannel as gypsum board.

  • PDF

Assessment of applicability on Solidification/Stabilization of Arsenic in contaminated Soil According to the Revised Korean Standard Leaching Test for Soil (개정 토양용출시험법에 따른 비소오염토양의 고형화/안정화 공법 국내 적용성 평가)

  • Hong, Seong-Hyeok;Park, Hye-Min;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings and soil around refinery, Because of its carcinogenic property, the countries like United States of America and Europe have made stringent regulations which govern the concentration of arsenic in soil. The study focuses on solidification/stabilization for removal of arsenic from soil. Cement was used to solidify/stabilize the abandoned soil primarily contaminated with arsenic (up to 68.92 mg/kg) in and around refinery. Solidified/stabilized (s/s) forms in the range of cement contents 5-30 wt % were evaluated to determine the optimal binder content. Revised Korean standard leaching tests (KSLT), toxicity characteristic leaching procedures (TCLP), Old Korea standard leaching test and revised Korea standard leaching test were used for chemical characterization of the S/S forms. The addition of 10 % cement remarkably reduced the leachability of arsenic in contaminated soil. The concentration of As in leachate of TCLP, KSLT, and old KSLT for soil are below the standard. However that in leachate of revised KSLT is above the standard. Because of extraction fluid used in revised KSLT is very strong acid. It is arsenic in s/s with binder should be exhaustingly leached. Therefore S/S process would not be available for As treatment in soil in Korea.

A Study on the Production of Landfill-Cover Material Using the Physical Characteristics of Sludge and the Reduction of Odor (슬러지의 물리적 특성을 이용한 매립복토재 생산과 악취저감에 대한 연구)

  • Park, Jung Hyun;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.15-29
    • /
    • 2020
  • The aims of this study is to improve physical properties of the sewage sludge and the process sludge generated in the leachate treatment by mixing the dry fuel, to develop the neutral solidifing agents that reduce oder, and to recycle the sewage and the process sludges as landfill cover materials. The mixing ratio (W/W) of sludges and dry fuel was appropriate at about 1:1, and the mixed materials were shown to be homogeneous at that ratio. We could know that when the sludges were mixed with dry fuel, moisture contents and viscosities are reduced, and air passages are formed between particles and particles. The various mixing tests and odor tests showed that the neutral solidifing agent was effective for the odor reduction. The main ingredient of the solidifing agent is the ash of sewage sludge, enabling it competitive in waste recycling and production costs. The landfill cover, using developed neutral solidification agent, improved physical properties to satisfy the quality standards and to increase the compressive strength. It also proved to reduce the value of complex oder and the usage of solidification agent to 1/3 (3,000 to 1,000) and to 1/8 (50% to 6%), respectively, from the comparative study with alkaline solidified landfill cover. Further research is under way to prove that this can be mixed with general soil to be used as a soil improvement agent for plant cultivation.

High-temperature Thermal Decomposition of Cs-adsorbed CHA-Cs and CHA-PCFC-Cs Zeolite System, and Sr-adsorbed 4A-Sr and BaA-Sr Zeolite System (Cs-흡착 CHA-Cs 및 CHA-PCFC-Cs 제올라이트계와 Sr-흡착 4A-Sr 및 BaA-Sr 제올라이트계의 고온 열분해)

  • Lee, Eil-Hee;Kim, Ji-Min;Kim, Hyung-Ju;Kim, Ik-Soo;Chung, Dong-Yong;Kim, Kwang-Wook;Lee, Keun-Young;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.49-58
    • /
    • 2018
  • For the immobilization of high-radioactive nuclides such as Cs and Sr by high-temperature thermal decomposition, this study was carried out to investigate the phase transformation with calcined temperature by using TGA (thermogravimetric analysis) and XRD (X-ray diffraction) in the Cs-adsorbed CHA (chabazite zeolite of K type)-Cs and CHA-PCFC (potassium cobalt ferrocyanide)-Cs zeolite system, and Sr-adsorbed 4A-Sr and BaA-Sr zeolite system, respectively. In the case of CHA-Cs zeolite system, the structure of CHA-Cs remained at up to $900^{\circ}C$ and recrystallized to pollucite ($CsAlSi_2O_6$) at $1,100^{\circ}C$ after undergoing amorphous phase at $1,000^{\circ}C$. However, the CHA-CFC-Cs zeolite system retained the CHA-PCFC-Cs structure up to $700^{\circ}C$, but its structure collapsed in $900{\sim}1,000^{\circ}C$, and then transformed to amorphous phase, and recrystallized to pollucite at $1,100^{\circ}C$. In the case of 4A-Sr zeolite system, on the other hand, the structure of 4A-Sr maintained up to $700^{\circ}C$ and its phase transformed to amorphous at $800^{\circ}C$, and recrystallized to Sr-feldspar ($SrAl_2Si_2O_8$, hexagonal) at $900^{\circ}C$ and to $SrAl_2Si_2O_8$ (triclinic) at $1,100^{\circ}C$. However, the BaA-Sr zeolite system structure began to break down at below $500^{\circ}C$, and then transformed to amorphous phase in $500{\sim}900^{\circ}C$ and recrystallized to Ba/Sr-feldspar (coexistence of $Ba_{0.9}Sr_{0.1}Al_2Si_2O_8$ and $Ba_{0.5}Sr_{0.5}Al_2Si_2O_8$) at $1,100^{\circ}C$. All of the above zeolite systems recrystallized to mineral phase through the dehydration/(decomposition) ${\rightarrow}$ amorphous ${\rightarrow}$ recrystallization with increasing temperature. Although further study of the volatility and leachability of Cs and Sr in the high-temperature thermal decomposition process is required, Cs and Sr adsorbed in each zeolite system are mineralized as pollucite, Sr-feldspar and Ba/Sr-feldspar. Therefore, Cs and Sr seen to be able to completely immobilize in the calcining wasteform/(solidified wasteform).