• Title/Summary/Keyword: Solidification temperature

Search Result 449, Processing Time 0.019 seconds

A Study on Hot Cracking in Ni-Base Superalloy Welds (I) - Effect of Fe Contents on Solidification Cracking Susceptibility in Weld Metal - (Ni기 초내열합금 용접부의 고온균열에 관한 연구(I) - 용접금속의 응고균열 감수성에 미치는 Fe의 영향 -)

  • ;;Kazutoshi Nishimoto
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.614-621
    • /
    • 2001
  • A study was carried out to determine the solidification cracking susceptibility of Ni-base superalloy as a function of Fe content in base metal. Three kinds of Ni-base superalloys with three different levels of Fe content were used. The solidification cracking susceptibility was evaluated by the Trans-Varestraint test at four different strain levels. Quantitative analysis of crack revealed that the solidification crack length and the temperature range in which hot cracking occurred in fusion zone (Brittle Temperature Range, BTR) decreased with a decrease in Fe content. Further, the thermo-calc data indicated that the solidification temperature range also decreased with decreasing Fe content. From these results, it was deduced that the improvement of the solidification cracking susceptibility with decreasing Fe content was attributed to the decrease of the solidification temperature range.

  • PDF

A Numerical Study of Turbulent Flow, Heat Transfer, and Solidification in Twin-Roil Continuous Casting (쌍롤 연속 주조에서의 난류 유동, 온도 및 응고 예측을 위한 연구)

  • Ha, Man Yeong;Choi, Bong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.12-24
    • /
    • 1999
  • A computer program has been developed for analyzing the two-dimensional, unsteady conservation equations for transport phenomena in the molten region of twin-roll continuous casting in order to predict the turbulent velocity, temperature fields, and solidification process of the molten steel. The energy equation of the cooling roll is solved simultaneously with the conservation equations of molten steel in order to consider heat transfer through the cooling roll. The results show the velocity, temperature and solidification pattern in the molten region with roll temperature as a function of time. The results for velocity and temperature fields with solidification are compared with those without solidification, giving different thermofluid characteristics in the molten region. We also investigated the effects of revolutional speed of roll, superheat and nozzle geometry on the turbulent flow, temperature and solidification in the molten steel and temperature fields in the cooling roll.

The Effect of Primary Solidification Mode on Physical Properties of Austenitic Stainless Steels (오스테나이트계 스텐리스 강의 물성에 미치는 초정응고 형식의 영향)

  • 정호신
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.4
    • /
    • pp.372-379
    • /
    • 1990
  • The effect of primary solidification phase on the solidification cracking sensitivity, corrosion resistance and toughness at cryogenic temperature was investigated for the austenitic stainless steel welds. The conclusions were summarized as follows; 1. Soldification crack sensitivity of austenitic stainless steel welds depends on the primary solidification mode. 2. Austenitic stainless steels were very susceptible to solidification cracking in case of solidification as primary ${\gamma}$ and immune when solidified as primary $\delta$. 3. When the ratio of Creq/Nieq is in the range of 1.46 to 1.55, the most resistance against solidification cracking was obtained. These results agreed well with the relationship between primary solidification mode, corrosion resistance and toughness at cryogenic temperature. 4. Optimum toughness, corrosion and solidification cracking resistance can be obtained when alloys having chemical compositions described above and solidifies as primary $\delta$ containing no ferrite at room temperature.

  • PDF

Estimation of Liquid Physical Properties of Mar-M247LC Superalloy by Directional Solidification (일방향 응고법을 이용한 Mar M-247LC 초내열합금의 액상 물성 측정)

  • Kim, Hyeon-Cheol;Lee, Jae-Hyeon;Seo, Seong-Mun;Kim, Du-Hyeon;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.721-726
    • /
    • 2001
  • Directional solidification experiments have been carried out at the solidification rates from 0.5 to 50$\mu\textrm{m}$/s in Mar M-247LC superalloy in which several important liquid properties were estimated by analyzing the interface stability and temperature gradient at the solid/liquid interface. The diffusion coefficient in the liquid was estimated by employing the constitutional supercooling criterion. The temperature gradients changed with solidification rates and latent heat of solidification. The thermal conductivities of solid and liquid could be estimated by heat flux balance at the solid liquid interface.

  • PDF

Solidification Microstructure and Carbide Formation behaviors in the Co-base Superalloy ECY768 (Co기 초합금 ECY768에서 응고 조직 및 탄화물 형성 거동)

  • Lee, J.S.;Kim, H.C.;Lee, J.H.;Seo, S.M.;Jo, C.Y.
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.381-388
    • /
    • 2003
  • Directional solidification experiments were carried out at 0.5-150 $\mu\textrm{m}$/s in the Co-base superalloy ECY 768. As increasing solidification rate, the dendrite length increased and it reached the maximum at 150 $\mu\textrm{m}$/s, where the tip temperature is close to the liquidus. The liquidus and eutectic temperatures could be estimated by comparing the dendrite lengths and the temperature gradients at the solid/liquid interface and those were estimated as $1424.6^{\circ}C$ and $1343^{\circ}C$ respectively. Between the dendrites just below final freezing temperature, MC carbide and $M_{23}$$C_{6}$ carbide were found. It was confirmed that the script or blocky shape was Ta or W-rich MC carbide, and the lamellar shape was Cr-rich eutectic carbide. The solid/liquid interface morphology clearly showed that the Cr-rich eutectic carbide formed just after the script type MC carbide.

Effect of Mold Preheat Temperature on Solidification Crack Strength of AC2B Aluminum Alloy (AC2B 알루미늄 주조합금의 응고균열 강도에 미치는 금형 예열온도의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.162-169
    • /
    • 2014
  • The effect of the mold preheat temperature on the solidification crack strength was investigated in AC2B aluminum alloy. A tension type apparatus as part of a solidification crack test which could measure the stress-strain relationship quantitatively was utilized. The evaluation of the solidification crack strength with varying mold preheat temperatures was performed by the test procedure established in this research. When the mold preheat temperatures were $250^{\circ}C$, $150^{\circ}C$ and $50^{\circ}C$, the solidification crack strengths were found to be $7.8Kgf/cm^2$, $12.9Kgf/cm^2$ and $28.6Kgf/cm^2$, respectively. In the same way, when the mold preheat temperatures were $250^{\circ}C$, $150^{\circ}C$ and $50^{\circ}C$, the corresponding temperatures of the failure sites were $610^{\circ}C$, $600^{\circ}C$ and $571^{\circ}C$, and the calculated solid fractions were 14.0%, 29.3% and 50.8% when the specimens failed, respectively. The solidification crack strength increased in proportion to the solid fraction of the failure site. The solidification crack strength obtained in this test is assumed to reflect the effects of metallurgical factors on the thermo-plastic characteristics of a solidifying alloy such as the grain size of the solid, the grain morphology, and the distribution of solid grain.

Solidification Cracking Behavior in Austenitic Stainless Steel Laser Welds (Part 2) -Effects of δ-ferrite Crystallization and Solidification Segregation Behavior on Solidification Cracking Susceptibility- (오스테나이트계 스테인리스강 레이저 용접부의 응고균열 거동 (Part 2) - δ 페라이트 정출 및 응고편석 거동에 따른 응고균열 민감도 변화 -)

  • Chun, Eun-Joon;Lee, Su-Jin;Suh, Jeong;Kang, Namhyun;Saida, Kazuyoshi
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.61-69
    • /
    • 2016
  • A numerical simulation of the solid/liquid coexistence temperature range, using solidification segregation model linked with the Kurz-Giovanola-Trivedi model, explained the mechanism of the BTR shrinkage (with an increase in welding speed) in type 310 stainless steel welds by reduction of the solid/liquid coexistence temperature range of the weld metal due to the inhibited solidification segregation of solute elements and promoted dendrite tip supercooling attributed to rapid solidification of laser beam welding. The reason why the BTR enlarged in type 316 series stainless welds could be clarified by the enhanced solidification segregation of impurity elements (S and P), corresponding to the decrement in ${\delta}-ferrite$ crystallization amount at the solidification completion stage in the laser welds. Furthermore, the greater increase in BTR with type 316-B steel was determined to be due to a larger decrease in ${\delta}-ferrite$ amount during welding solidification than with type 316-A steel. This, in turn, greatly increases the segregation of impurities, which is responsible for the greater temperature range of solid/liquid coexistence when using type 316-B steel.

Influence of Metallic Sodium on Repair Weldability for Type 316FR Stainless Steel

  • Chun, Eun-Joon;Lee, Su-Jin;Suh, Jeong;Lee, Ju-Seung;Kang, Namhyun;Saida, Kazuyoshi
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • The effect of residual metallic sodium on the solidification cracking susceptibility of type 316FR stainless steel was investigated via transverse-Varestraint tests. And a solidification brittle temperature range (BTR) of type 316FR stainless steel was 37 K. However, the BTR expanded from 37 to 67 K, as the amount of metallic sodium at the specimen surface increased from 0 to $7.99mg/cm^2$. Microstructural observation of the weld metal suggested that metallic sodium existed in the weld metal, including in the cell boundaries, during welding solidification. Thermodynamic calculations suggested that sodium expanded the temperature range of solidliquid coexistence during welding solidification of the steel weld metal. Therefore, the increased solidification cracking susceptibility (i.e., expansion of the BTR) in the residual sodium environment was attributed to enhanced segregation of sodium during the welding solidification; this segregation, in turn, resulted in an expanded temperature range of solid-liquid coexistence.

Dendrite Arm Spacing and Carbide Morphology with Thermal Gradient and Solidification Rate in Directionally Solidified Ni-Base Superalloy (일방향 초내열합금에서 응고속도 및 온도구배 따른 수지상간격 및 탄화물 형상 변화)

  • Son, S.D.;Kim, Y.H.;Choi, G.S.;Lee, J.H.;Seo, S.M.;Jo, C.Y.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • The effects of thermal gradient and solidification rate on the dendrite arm spacing and carbide morphology were investigated in directionally solidified Ni-base superalloy, CM 247LC. Thermal gradient was controlled by changing the position of the cold chamber and the furnace set temperature. The interface morphology changed from the planar to dendritic as increasing solidification rate. It was found that the dendrite spacing decreased as increasing the thermal gradient as well as the solidification rate. Also, as increasing solidification rate, carbide morphology changed from blocky shape to script and spotty shapes.

Eutectic Ceramic Composites by Melt-Solidification

  • Goto, Takashi;Tu, Rong
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.331-339
    • /
    • 2019
  • While high-temperature ceramic composites consisting of carbides, borides, and nitrides, the so-called ultra-high-temperature ceramics (UHTCs), have been commonly produced through solid-state sintering, melt-solidification is an alternative method for their manufacture. As many UHTCs are binary or ternary eutectic systems, they can be melted and solidified at a relatively low temperature via a eutectic reaction. The microstructure of the eutectic composites is typically rod-like or lamellar, as determined by the volume fraction of the second phase. Directional solidification can help fabricate more sophisticated UHTCs with highly aligned textures. This review describes the fabrication of UHTCs through the eutectic reaction and explains their mechanical properties. The use of melt-solidification has been limited to small specimens; however, the recently developed laser technology can melt large-sized UHTCs, suggesting their potential for practical applications. An example of laser melt-solidification of a eutectic ceramic composite is demonstrated.