• Title/Summary/Keyword: Solidification speed

Search Result 110, Processing Time 0.023 seconds

Study for Solidification and Bulging of the Continuous Casting Slab (연속 주편의 응고와 벌징해석에 관한 연구)

  • 조종래
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.30-34
    • /
    • 2000
  • In this paper we analyzed bulging condition which affect the quality of continuous casting steel by using the numerical analytic method. First solidification analyses are performed for each cooling zones. Solidification analysis are carried out by one-dimensuional finite difference method. The bulging deformation of cast slab has been calculated with a two-dimensional elasto-plastic and creep finite element model. The adequacy of the model has been checked against the experimental results. From this study the effects of the process variables such as casting speed cooling condition roll pitch are examined. The results from these analyses would be able to apply to the design of continuous casting process.

  • PDF

The Study on Evaluation of Weldability of Austenitic Heat Resistant Stainless Steel (오스테나이트계 내열 스테인리스강의 용접성 평가에 관한 연구)

  • 변경일;지병하;정호신
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.236-239
    • /
    • 2000
  • It is important to evaluate austenitic heat resistant stainless steel because of low weldability of austenitic heat resistant stainless steel containing high Si. This study took varestraint test for evaluation of solidification cracking sensitivity and Erichsen test for evaluation of weld metal ductility. As a result of tests, solidification crack sensitivity increased with adding $N_2$ to shielding gas, and W had detrimental effect on crack resistance, but Ce had beneficial effect on crack resistance. Under same heat input, ductility of weld metal increased with welding speed.

  • PDF

Crystal Growth of Al-Cr and Al-Ti Peritectic Alloys by the Upward Continuous Casting Proces (상향식 연속주조법에 의한 Al-Cr 및 Al-Ti 2원계 포정합금의 결정성장)

  • Baeck, Seoung-Yil;Choi, Jong-Cheol;Shin, Hyun-Jin;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.203-209
    • /
    • 1992
  • Directional solidification of Al-Ti peritetic alloys was carried out using Upward Continuous Casting Process. The morphology of a solid-liquid interface and solidification microstructures were investigated under various crystal growing conditions. The experimental results were compared with those attained by the Bridgman method. The cell spacing of the Al-Ti peritetic alloys and the primary dendrite arm spacing of the Al-Ti peritetic alloys decreased with an increase in pulling speed. The primary ${\beta}$ phase of the Al-Cr and Al-Ti peritectic alloys did not appear in solidification microstructures because of the depleted solute contents in the melt ahead of the solid-liquid interface.

  • PDF

A Study on the Joining of Different Al Alloys by Centrifugal Casting (원심주조를 이용한 2종 알루미늄의 접합에 대한 연구)

  • Jang, Young-Soo;Lee, Moon-Hyoung;Moon, Jun-Young;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.237-242
    • /
    • 2007
  • To improve the quality of the product and the cost efficiency, the joining of A356 alloy to an Al-18wt%Si alloys has been performed by centrifugal casting. The influence of the mold preheating temperature, the pouring temperature and the rotational velocity of the mold on the microstructures of the shell in the centrifugal casting was investigated using the experimental and simulation methods. In the present study, the cellular automaton (CA) technique and the finite volume method (FVM) were adopted to simulate the evolution of the macro structures and to calculate the temperature profiles, respectively. The evolution of the microstructures was also simulated using a modified cellular automaton (MCA) model. The optimal rotational speed of the mold for obtaining the sound shape of the shell was estimated experimentally to be over 1200 rpm. For the uniform microstructure, the outer shell needs to be cast with higher preheated mold temperature and lower pouring temperature, and the melt was poured at lower temperature in the inner shell. In order to obtain the sound shape of the joining, the different materials were poured simultaneously.

Effect of Pulse Shapes on Weld Defects in Pulsed Laser Welding of Stainless Steel

  • Kim, Jong-Do;Kil, Byung-Lea;Kim, Young-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1270-1278
    • /
    • 2004
  • This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG laser welding. A large porosity was formed in a keyhole mode of deeply penetrated weld metal of any stainless steel. Solidification cracks were present in STS 310S with above 0.017%P and undercuts were formed in STS 303 with about 0.3%S. The conditions for the formation of porosity were determined in further detail in STS 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of STS 310S through a high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.

Grain Refinement of Mg-5wt%Zn Alloy by Rapid Solidification Process (급냉응고에 의한 Mg-5wt%Zn 합금의 결정립 미세화)

  • Kim, Yeon-Wook;Lee, Eun-Jong;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.302-308
    • /
    • 1997
  • In spite of the fact that magnesium has low density and good machinability, its applications are restricted as a structural engineering material because of the poor strength, ductility, and corrosion resistance of the conventional ingot metallurgy alloys. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-5wt%Zn alloys have been produced as continuous strips by the melt overflow technique. In order to evaluate the influence of the cooling rate on the grain refinement and mechanical properties, seven different thickness strips were produced by means of controlling the speed of the cooling wheel. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate. The tremendous increase in hardness of Mg-Zn alloy was mainly due to the refinement of the grain structure by the effect of rapid solidification. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification process emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

Analysis of the Coupled Turbulent Flow and Macroscopic Solidification in Twin-Roll Continuous Casting Process (쌍롤식 연속주조공정에서의 난류유동 및 거시적응고 해석)

  • Kim, Deok-Su;Kim, U-Seung;Jo, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.285-295
    • /
    • 2001
  • The transport phenomena in a wedge-shaped pool of twin-roll continuous caster are affected by the various operating parameters such as the melt-feed pattern, roll-gap thickness, melt-superheat, and casting speed. A computer program has been developed for analyzing the two-dimensional, steady conservation equations for transport phenomena during twin-roll continuous casting process in order to estimate the turbulent melt-flow, temperature fields, and solidification in the wedge-shaped pool. The turbulent characteristics of the melt-flow were considered using a low-Reynolds-number K-$\xi$ turbulence model. Based on the computer program, the effects of the different melt-feed patterns, roll-gap thicknesses, and superheats of melt on the variations of the velocity and temperature distributions, and the mushy solidification were examined. The results show that the liquidus line is located considerably at the upstream region, and in the lower region appear the well-mixed melt-flow and most widely developed mushy zone. Besides, the variation of melt-flow due to varying melt-feed patterns, affects mainly the liquidus line, and scarcely has effects on the solidus line in the outlet region.

Analysis of the Molten Metal Direct Rolling for Magnesium Considering Thermal Flow Phenomena (열 유동 현상을 고려한 마그네슘 용탕 직접 압연공정 해석)

  • Bae J.W.;Kang C.G.;Kang S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.786-789
    • /
    • 2005
  • The proper parameters in a twin roll strip casting are important to obtain the stabilization of the Mg sheet. What is examined in this paper is the quantitative relationships of the important control parameters such as the roll speed, height of pool region, outlet size of nozzle, solidification profile and the final point of solidification in a twin roll strip casting Unsteady conservation equations were used for transport phenomena in the pool region of a twin roll strip casting in order to predict a velocity, temperature distributions of fields and a solidification process of molten magnesium. The energy equation of cooling roll Is solved simultaneously with the conservation equations of molten magnesium In order to consider the heat transfer through the cooling roil. The finite difference method (2-D) and the finite element method (2-D) are used in the analysis of pool region and cooling roil to reduce computing time and to improve the accuracy of calculation respectively.

  • PDF

Solidification Crackin in Root Pass for One-side Welding of 590MPa Class Steel for Pressure Vessels by FCAW (FCAW에 의한 590MPa급 고장력압력용기강의 초층편면용접부에서 발생하는 고온균열)

  • 김우열;한일욱;유덕상;방한서;안용식;박화순
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.47-54
    • /
    • 1999
  • It is well known that solidification cracking often occurs in welds of root pass for one-side welding under the conditions of high welding currents and speeds. In this study, the solidification in 590MPa class steel for pressure vessels SPPV490 was investigated by using flux-cored arc welding(FCAW) with 4 types of welding wires and welding conditions of 200∼280A and 2.8∼ 4.2mm/sec. In order to compared the result of cracking in SPPV490, 0.2%C steel for welded structure of SWS400 and 0.45%C steel for machine structural SM45C were also used as base metals. As the results, all the cracks formed in some welding conditions were observed near the center of weld bead. The solidification cracks were generally initiated near the upper surface of bead and propagated toward the inner part. The solidification cracking generally increased with welding current and welding speed in the same base metal and welding material. In cracking susceptibility, SPPV490 showed higher cracking susceptibility than SWS400 in all welding conditions and welding materials. It was considered that cracking susceptibility could not be evaluated with the hardness of weld metals. The cracking ratio increased with decreasing of a/b(a and b; the width of the upper surface and the back surface of the bead) as shape factor of bead. The cracking tendency with shape factor of bead was extended under the condition of higher welding currents.

  • PDF