• Title/Summary/Keyword: Solidification rate

Search Result 228, Processing Time 0.026 seconds

Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

  • Zou, Jin;Zhai, Qi-Jie;Liu, Fang-Yu;Liu, Ke-Ming;Lu, De-Ping
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1275-1284
    • /
    • 2018
  • A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

The Effects of Sample Rotation on Cu-Dendritic Growth During the Directional Solidification of Pb-20wt%Cu Alloy (Pb-20wt%Cu 합금의 일방향 응고시 Cu 수지상 결정성장에 대한 시험편의 회전효과)

  • Kim, Shin-Woo
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.508-513
    • /
    • 1994
  • For Pb-20wt%Cu alloys, severe macrosegregation due to density difference of the resulting phases in normal directional solidification has been minimized and a uniformly aligned dendritic structure has been produced by axially rotating the sample of 5mm diameter in conjunction with horizontal directional solidification. Under the constant growth velocity of $20{\mu}m/sec$, increasing the rotation rate from 0.18 to 12rpm results in a transition from an aligned columnar to an equiaxed Cu-dendritic structure. With a constant rotation rate of 0.18rpm, increasing the growth velocity from 10 to $50{\mu}m/sec$ also has promoted a transition from columnar to equiaxed structure.

  • PDF

Grain Refinement of Mg-5wt%Zn Alloy by Rapid Solidification Process (급냉응고에 의한 Mg-5wt%Zn 합금의 결정립 미세화)

  • Kim, Yeon-Wook;Lee, Eun-Jong;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.302-308
    • /
    • 1997
  • In spite of the fact that magnesium has low density and good machinability, its applications are restricted as a structural engineering material because of the poor strength, ductility, and corrosion resistance of the conventional ingot metallurgy alloys. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-5wt%Zn alloys have been produced as continuous strips by the melt overflow technique. In order to evaluate the influence of the cooling rate on the grain refinement and mechanical properties, seven different thickness strips were produced by means of controlling the speed of the cooling wheel. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate. The tremendous increase in hardness of Mg-Zn alloy was mainly due to the refinement of the grain structure by the effect of rapid solidification. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification process emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

Solidification of the Aluminum with the Forced Liquid Convection (강제 대류하에서의 알루미늄 응고에 관한 연구)

  • Kim, Hyung-Kyoo;Hong, Kyung-Tae;Huh, Sung-Kang;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.509-519
    • /
    • 1990
  • A Solidification of the aluminum was studied under the condition of the forced liquid convection. The Al melt was stirred by a highly rotating carbon bar on whose surface the solidified Al was nucleated. The Al was refined by partial solidification and the solute distributions were rationalized through the estimation of the solidification rate which is based on the heat transfer calculation of the process. The microstructure-morphological change of the specimens was also showed.

  • PDF

Finite Element Analysis of Compression Holding Step Considering Solidification for Semi-Solid Forging (반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석)

  • 최재찬;박형진;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.597-601
    • /
    • 1997
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near-net shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating,forming,compression holding and ejecting step. After forming step in SSF, the slug is comperssed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature,solid fraction and shrinkage at compression holding step for a cylindrical slug,then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

Study on High Temperature Phase Transformation and Directional Solidification of TiAl-Nb Alloy (TiAl-Nb 합금의 고온상변태와 일방향응고에 관한 연구)

  • Park, Jong-Moon;Jang, Ho-Seung;Kim, Seong-Woong;Kim, Seung-Eon;Shon, Je-Ha;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.5
    • /
    • pp.227-233
    • /
    • 2016
  • Phase transformation phenomenon at high temperature was investigated by using designed TiAl-Nb alloys with addition of the ${\beta}$ stabilizer. Examination of dendritic morphologies in arc-melted button ingot could reveal the crystallography of the primary solidification phase. It was found that the addition of ${\beta}$ stabilizer(Nb) shifted the high temperature region of the binary Ti-Al phase diagram to the high Al composition side so that ${\beta}$ phase forms as a primary crystal even at higher Al composition compared with the binary Ti-Al system. The ${\beta}$ was found to be the primary solidification phase for alloys with Al content less than about 52 at.%. The composition of ${\beta}$ solidification in Ti-Al-Nb ternary system could be determined from the partial liquidus projection which was constructed by observing the microstructure of arc-melted buttons. The Ti-46Al-(6, 8)Nb composition was selected for ${\beta}$ solidification and the directional solidification was performed by a floating zone-type DS apparatus at the growth rate 30 mm/hr respectively.

Influence of the Cooling Rate on the Phase Precipitation of Super Duplex Stainless Steel (슈퍼 듀플렉스 스테인리스강의 응고·냉각 시 상석출에 미치는 냉각속도의 영향)

  • Jang, Eun Seok;Kim, Ki Young;Kim, Suk Jun
    • Journal of Korea Foundry Society
    • /
    • v.35 no.2
    • /
    • pp.23-28
    • /
    • 2015
  • This work presents the effect of the cooling rate on the precipitation of super duplex stainless steel. Specimens of super duplex stainless steel with a specific composition were cooled at various cooling rates after being melted at $1550^{\circ}C$ in a directional solidification furnace. Ferrite (${\delta}$), Austenite (${\gamma}$), Sigma (${\sigma}$), and Chi (${\chi}$) phases were precipitated when the cooling rate was lower than 0.22 K/s. When the cooling rate was 0.22 K/s or faster, ${\sigma}$ and ${\chi}$ phases were not precipitated.

Melt Properties of Plasma Display Panel Substrate Glasses Based on Float Process (Float 공법을 고려한 Plasma Display Panel용 기판유리 용융체의 특성)

  • Kim, Ki-Dong;Jung, Woo-Man;Jung, Hyun-Su;Kwon, Sung-Ku;Choi, Se-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.433-438
    • /
    • 2006
  • In order to examine the working condition of melts in tin bath of float process it was investigated Sn diffusion behavior and solidification rate of melts for alkali-alkaline earth-silica PDP substrate glasses such as commercial CaO rich CS-77 glass, commercial $Al_2O_3$ rich PD-200 glass and self developed $SiO_2$ rich T-series (T-2, T-4, T-6) glasses. In the case of Sn depth and concentration created in glass surface by ion exchange between Sn and alkali, T-series showed lower value than CS-77, especially T-2 is more excellent than PD-200. The solidification rate of melts expressed by cooling time between $log{\eta}=4\;and\;7.6dPa{\cdot}s$ was low for T-series comparing with CS-77 and PD-200. Therefore, it was concluded that T-series is desirable considering forming condition in the tin bath of the float process.

The Electrode Characteristics of the Zr-based Hydrogen Absorbing Alloy Fabricated by the Rapid Solidification Process (급속응고법으로 제작한 Zr기 수소저장합금의 전극특성)

  • Han, Dong-Su;Jeong, Won-Seop;Kim, In-Gon
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.386-391
    • /
    • 1999
  • The charge-discharge, the high-rate dischargeability, and the self discharge characteristics of the electrodes composed of rapidly solidified ZrV\ulcornerMn\ulcornerMo\ulcornerNi\ulcorneralloy, which has the form of partial substitution of Mn, Mo, Ni for V in $ZrV_2$ were studied. The alloys were prepared using Arc & RSP(Rapid Solidification Process) at the rotating roller speed of 2000 and 5000 rpm. Some of them were received heat treatment at$ 560 ^{\circ}C$ for 1 hour after the solidification to investigate the effect of the heat treatment. It was fond that cycle life was significantly improved by RSP, whereas discharge capacity, activation rte and high rate dischargeability were decreased compared with the conventional arc melting method. The capacity loss seems to be due to the loss of the crystallinity and the increase of the cycle life ascribed to the presence of the amporphous phase as well as the refined grain size of less than 0.2$\mu\textrm{m}$. Heat treatment of the alloy cooled at 2000 rpm improved the cycle life. In case of the alloys cooled at 5000 rpm, both the discharge capacity and the activation rate were significantly improved by the heat treatment.

  • PDF

A Study on the Two-Dimensional Phase Change Problem in a Rectangular Mold with Air-Gap Resistance to Heat Flow (공기층 저항을 고려한 사각형 주형내에서의 2차원 상변화문제에 관한 연구)

  • 여문수;손병진;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1205-1215
    • /
    • 1992
  • The solidification rate is of special importance in determining the casting structures and properties. The heat transfer characteristics at the interface between the mold and the casting is one of the major factors that control the solidification rate. The thermal resistance exists due to the air-gap formation at the mold/casting interface during the freezing process. In this study two-dimensional Stefan problem with air-gap resistance in the rectangular mold is considered and the heat transfer characteristics is numerically examined by using the enthalpy method. The effects of the major parameters, such as mold geometry, thermal conductivity, heat transfer coefficient, and initial temperature of casting, on the thermal characteristics are investigated.