• Title/Summary/Keyword: Solidification crack test procedure

Search Result 2, Processing Time 0.014 seconds

Quantitative Evaluation of Solidification Crack Strength of AC2B Aluminum Casting Alloy (AC2B 알루미늄 주조합금의 정량적 응고균열 강도 평가)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.4
    • /
    • pp.136-142
    • /
    • 2014
  • Numerical solution of thermal stress by CAE analysis could be an effective method in product development stage of castings to predict and treat the problem of solidification cracking of castings. Quantitative stress-strain data are necessary, in this case. Tension type apparatus of a solidification crack test which can measure stress-strain relationship quantitatively was developed and the test procedure was established by this research. Solidification crack strength obtained from the following test procedure could be utilized to evaluate it in terms of effect factors on thermo-plastic characteristic of solidifying alloy such as grain size of solid, grain morphology, distribution of solid grain, etc. Proposed test procedure is as follow: Prediction of temperature at the failure site of solidification cracked specimen by computer simulation of solidification, Calculation of solid fraction of the failure site from thermodynamic solution of solidification under Scheil condition.

Effect of Mold Preheat Temperature on Solidification Crack Strength of AC2B Aluminum Alloy (AC2B 알루미늄 주조합금의 응고균열 강도에 미치는 금형 예열온도의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.162-169
    • /
    • 2014
  • The effect of the mold preheat temperature on the solidification crack strength was investigated in AC2B aluminum alloy. A tension type apparatus as part of a solidification crack test which could measure the stress-strain relationship quantitatively was utilized. The evaluation of the solidification crack strength with varying mold preheat temperatures was performed by the test procedure established in this research. When the mold preheat temperatures were $250^{\circ}C$, $150^{\circ}C$ and $50^{\circ}C$, the solidification crack strengths were found to be $7.8Kgf/cm^2$, $12.9Kgf/cm^2$ and $28.6Kgf/cm^2$, respectively. In the same way, when the mold preheat temperatures were $250^{\circ}C$, $150^{\circ}C$ and $50^{\circ}C$, the corresponding temperatures of the failure sites were $610^{\circ}C$, $600^{\circ}C$ and $571^{\circ}C$, and the calculated solid fractions were 14.0%, 29.3% and 50.8% when the specimens failed, respectively. The solidification crack strength increased in proportion to the solid fraction of the failure site. The solidification crack strength obtained in this test is assumed to reflect the effects of metallurgical factors on the thermo-plastic characteristics of a solidifying alloy such as the grain size of the solid, the grain morphology, and the distribution of solid grain.