• Title/Summary/Keyword: Solidification Rate

Search Result 228, Processing Time 0.024 seconds

The Effect of the Metallic Mold Cooling System on the Solidification Structures and the Mechanical Properties for Al-10%Si Alloy Castings (금형주조한 Al-10%Si합금의 응고조직과 기계적 성질에 미치는 금형의 냉각효과에 관한 연구)

  • Lee, Dong-Youn;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.2
    • /
    • pp.155-162
    • /
    • 1993
  • This study has been focused on the influence of the metallic mold cooling effects on the solidification structures and the mechanical properties for Al-10%Si alloy castings by the variation of pouring temperatures, metallic mold temperatures and Cooling part of metallic mold. The dendrite arm spacing of Al-10%Si alloy was decreased with increasing cooling rate. In case of bottom cooling of metallic mold, DAS was appeared to be $20-22{\mu}m$ and in the middle cooling, it was increased to $36-40{\mu}m$. The DAS decreased proportionally $with(cooling\;rate)^{-3/2}$ at pouring temperatures $680^{\circ}C$ and $(cooling\;rate)^{-1/2}$ at pouring temperature $760^{\circ}C$, but it was proportionally increased to $(local\;solidification\;time)^{1/2-1/3}$ at pouring temperature $680^{\circ}C$ and $760^{\circ}C$. The maximum tensile strength of Al-10%Si alloy casting was obtained in case of bottom cooling of mold at pouring temperature $680^{\circ}C$ and metallic mold temperature $320^{\circ}C$.

  • PDF

Microstructural Control of Mg-Zn Alloys by Rapid Solidification and Elemental Addition (급냉응고와 원소첨가에 의한 Mg-Zn합금의 미세조직 제어)

  • Kim, Yeon-Wook;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.283-288
    • /
    • 1998
  • Interest in rapid solidification of magnesium alloys stems from the fact that conventional ingot metallurgy alloys exhibit poor strength, ductility, and corrosion resistance. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-Zn alloys have been produced as continuous strips by melt overflow technique. In order to evaluate the influence of additional elements on the grain refinement and mechanical properties, Th and Zr were added in rapidly solidified Mg-5wt%Zn alloy. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate and the additional elements. The tremendous increase in hardness of Mg-Zn base alloys was mainly due to the refinement of the grain structure by the effect of rapid solidification and alloying elements. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification processing of magnesium alloys emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

The Effect of Coolant Boiling on the Molten Metal Pool Heat Transfer with Local Solidification

  • Cho, Jea-Seon;Kune Y. Suh;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.34-45
    • /
    • 2000
  • This study is concerned with the experimental test and numerical analysis of the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. In the test, the metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Experiments were performed by changing the test section bottom surface temperature of the metal layer and the coolant injection rate. The two-phase boiling coolant experimental results are compared against the dry test data without coolant or solidification of the molten metal pool, and against the crust formation experiment with subcooled coolant. Also, a numerical analysis is performed to check on the measured data. The numerical program is developed using the enthalpy method, the finite volume method and the SIMPLER algorithm. The experimental results of the heat transfer show general agreement with the calculated values. The present empirical test and numerical results of the heat transfer on the molten metal pool are apparently higher than those without coolant boiling. This is probably because this experiment was performed in concurrence of solidification in the molten metal pool and the rapid boiling of the coolant. The other experiments were performed without coolant boiling and the correlation was developed for the pure molten metal without phase change.

  • PDF

Effect of Centrifugal Casting Thickness on the Mechanical Properties and the Microstructure of Alloy 625 (Alloy 625의 특성과 조직에 미치는 원심주조품 두께의 영향)

  • Lee, Yu-Jung;Kim, Byung-Hoon;Joo, Yun-Kon;Jo, Chang-Yong;Lee, Je-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.42 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • The effect of thickness on the microstructure and the mechanical properties of centrifugal cast 625 was investigated. Centrifugal cast 625 with various thickness of 10, 17 and 50mm showed partially columnar grained structure 8, 12.3 and 18.5mm respectively from the outer surface. Secondary dendrite arm spacing in the columnar grains slightly increased with increasing casting thickness. Tensile strength of the columnar region was similar regardless of casting thickness. Solidification behavior of the columnar grained region is similar to that of directional solidification, thus solidification rate in the centrifugal cast tube was extrapolated from the secondary dendrite arm spacing data of the directionally solidified material. The equiax grained region formed interior of the thick castings. The tensile strength of the equiaxed region showed the average value of the columnar region which is presumably originated from the grain structure rather than secondary dendrite arm spacing.

The Effect of the cooling Rate on Fracture Toughness and Fatigue Crack Properties of Al-Si-Mg(A356) Alloy Castings (Al-Si-Mg(A356) 주조합금의 파괴인성 및 피로균열전파에 미치는 응고속도의 영향)

  • Kim, Chang-Joo;Kim, Chung-Keun
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 1991
  • Aluminium alloy castings, which can be not only manufactured in larger geometrically complex shapes, but also show good mechanical properties in addition to light weight, have kept their potential use as structures in the field of automotives, industrial machines and aircrafts. The variations of eutectic Si size a great effect on the elongation, impact value, fracture toughness and fatigue crack propagation rate without changes in the tensile strength or yield strength. The cooling curves with the solidification rate between $1.4^{\circ}C\;/min$ and $19.1^{\circ}C\;/min$ were obtained. With the increase of solidification rate, DAS, eutectic Si size and grain size were all decreased, which enhanced the mechanical properties. The tensile strength and yield strength were the most greatly influenced by DAS, and the elongation and impact value by eutectic Si size.

  • PDF

Characterization of Solidification and Microstructure of an Al-Zn-Mg-Si Alloy

  • He Tian;Dongdong Qu;Zherui Tong;Nega Setargew;Daniel J. Parker;David StJohn;Kazuhiro Nogita
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.104-112
    • /
    • 2024
  • Al-Zn-Mg-Si alloy coatings have been developed to inhibit corrosion of cold rolled steel sheets, and an understanding of the alloy system helps prevent coating defects. We used a Bridgman furnace to characterise the nature and formation mechanisms of the phases present in the quaternary system with 0.4 wt% Fe. In the directional solidification experiments we imposed steep temperature gradients and varied the pull rate. After the samples were quenched in the furnace, detailed characterization of the samples was carried out by electron microscopy (SEM/EDS). From the dT/dt vs T plots of the cooling curves of the alloys, the solidification path was determined to be $Liquid{\longrightarrow[80]^{544-558}}{\alpha}-Al{\longrightarrow[80]^{453-459}}Al/Mg_2Si{\longrightarrow[80]^{371-374}}Al/Zn{\longrightarrow[80]^{331-333}}Zn/mgZn_2$. The formation mechanisms of the Mg and Zn containing phases and their morphology was discussed together with the effects of the cooling rate. Key findings include the lengthening of the mushy zone in directionally solidified samples remelted against a positive temperature gradient, as well as an enrichening of the α-Al phase by Zn through remelting. Mg2Si and other Si based phases were observed to adopt a much finer faceted microstructure in favour of a script-like microstructure when exposed to the higher cooling rate of coolant quenching.

The Effect of Cooling Rate on the Solidification Behavior and Segregation of 7075 and 7050 Aluminum Alloys (7075 및 7050 알루미늄 합금의 응고 거동 및 편석에 미치는 냉각 속도의 영향)

  • Choi, Jeong-Yun;Kwon, Young-Dong;Lee, Joo-Won;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.343-349
    • /
    • 2001
  • The effect of cooling rate on the solidification microstructure and segregation behavior of 7075 and 7050 aluminum alloy was investigated. Samples were solidified with cooling rates from 0.3 to $17^{\circ}K/sec$. Using the cooling curves of each sample, liquidus, eutectic and intermetallic reaction temperatures were estimated. The microstructures were characterized in terms of dendrite arm spacing and eutectic volume fraction. The segregation behavior of each alloying element of these alloys in various cooling rates was discussed.

  • PDF

A Study on Heat Transfer in Sand Molds (사형(砂型)의 열전달(熱傳達)에 관(關)한 연구(硏究))

  • Lee, Jong-Nam;Kim, Kwang-Bea
    • Journal of Korea Foundry Society
    • /
    • v.2 no.1
    • /
    • pp.2-11
    • /
    • 1982
  • In order to investigate the relationship between the thermal characteristics of the various molds as green sand mold, dry sand mold, $CO_2$ mold and shell mold, and the solidification characteristics of molten metal, the thermal analysis of rarious molds and melt were performed. The structure of Al-Castings was a/so observed. Results obtained in this experiment were as follows : 1) The heating rate of the molds was increased in the order of green sand mold, $CO_2$ mold, dry sand mold and shell mold, On the other hand the solidification time of the melts was shortened in the order of dry sand mold castings, $CO_2$ mold castings, green sand mold castings and shell mold castings. 2) The arrest temperature period in the heating curve of the green sand mold was resulted from the eraporation of moisture contained in mold, which was transfered to the outer side of the mold. 3) The temperature fluctuation of the melt in the shell mold was considered to be resulted from the combution heat of resin contained in the mold. 4) The amounts of heat absorption of the molds were increased in the order of dry sand mold, $CO_2$ mold, green sand mold and shell mold. 5) The higher the solidification rate was, the longer was its shrinkage pipe and the finer its grain size.

  • PDF

The Effects of VAR Processing Parameters on solidification Microstructures in Ti Alloys by Computer Simulation (열전달 해석을 이용한 VAR 공정 변수가 티타늄 합금 잉고트 응고 조직에 미치는 영향 연구)

  • Kim, Jong-Hwan;Lee, Jae-Hyeon;Heo, Seong-Gang;Hyeon, Yong-Taek;Lee, Yong-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.398-406
    • /
    • 2002
  • VAR process is required to control its various operating parameters. Heat transfer simulation has been accomplished to understand development of solidification micro and macro-structures during VAR process in Ti alloys. Optimum VAR process parameters could be also estimated in this study. It was found that macro-structures were closely related to the shape and depth of liquid pool, and solidification parameters, such as temperature gradient, heat flux, solid fraction. The cooling rates were higher at bottom, top, and center part respectively. As cooling rates increased, the $\alpha$ phase decreased in length, width and fraction. In order to evaluate which parameter affects the result of heat transfer calculation most sensitively, the sensitivities of input parameters to the simulation result were examined. The pool depth and cooling rate showed more sensitive to the temperature of the molten metal, heat transfer coefficient, and liquidus respectively. Also, these thermal properties became more sensitive at higher temperatures.

Solidification Behaviors of the Rapidly Solidified Metallic Powders and Development of the Powder Making Process.;Part I : Development of the Powder Making Process (급속응고된 금속분말의 응고거동 및 제조법에 관한 연구;Part I : 급속응고 제조법)

  • Kim, Jong-Yoon;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.164-174
    • /
    • 1995
  • New metallic powder making processes, named "Centrifugal Emulsification Process(CEP)" and "Mixer and Settler(MS)" have been developed to synthesize rapid solidified metallic powders. Through CEP and MS processings, the high temperature metals as well as the low temperature alloys are manufactured. Also, the effects of rapid solidification on the undercooling, solidification rate and crystallization behaviors can be evaluated effectively through the processes. The standard deviations of the synthesized typical Pb-Sn eutectic powders are 1.63 and 1.51 for CEP and MS respectively, and the average size of the MS powders was $18{\mu}m$. The possibility of the customized not only size and shape control but microstructure control was also shown. Both of the new methods can be applied to continuous powder making processes.

  • PDF