• Title/Summary/Keyword: Solid-state reaction method

Search Result 379, Processing Time 0.024 seconds

Synthesis and Photoluminescence Properties of Dy3+- and Eu3+-codoped CaMoO4 Phosphors (Dy3+와 Eu3+ 이온이 동시 도핑된 CaMoO4 형광체의 합성과 발광 특성)

  • Kim, Junhan;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.82-86
    • /
    • 2015
  • $Dy^{3+}$- and $Eu^{3+}$-codoped $CaMoO_4$ Phosphors were synthesized by using the solid-state reaction method. The crystal structure, morphology, and optical properties of the resulting phosphor particles were investigated by using the X-ray diffraction, field-emission scanning electron microscopy, and photoluminescence spectroscopy. XRD patterns exhibited that all the synthesized phosphors showed a tetragonal system with a main (112) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. As the content of $Eu^{3+}$ ions increased, the grains showed a tendency to agglomerate. The excitation spectra of the synthesized powders were composed of one strong broad band centered at 305 nm in the range of 220 - 350 nm and several weak peaks in the range of 350 - 500 nm resulting from the 4f transitions of activator ions. Upon ultraviolet excitation at 305 nm, the yellow emission line due to the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ ions and the main red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions were observed. With the increase of the content of $Eu^{3+}$, the intensity of the yellow emission band gradually decreased while that of the red emission increased. These results indicated that the emission intensities of yellow and red emissions could be modulated by changing the content of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the host crystal.

Effects of Eu3+ Concentration on the Photoluminescence Properties of Y1-xPO4:Eux3+ Red Phosphor (Eu3+ 함량비가 Y1-xPO4:Eux3+ 적색 형광체의 발광 특성에 미치는 영향)

  • Cho, Seon-Woog;Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.430-435
    • /
    • 2011
  • $Y_{1-x}PO_4:{Eu_x}^{3+}$ red phosphors were synthesized with changing the concentration of $Eu^{3+}$ ion by using a solid-state reaction method. The crystal structures of all the red phosphors were found to be a tetragonal system composed of (200) diffraction peak centered at $25.88^{\circ}$, and the morphology of grains approached the spherical form with homeogenous size distribution as the concentration of $Eu^{3+}$ ion increased. As for the photoluminescence properties, all of the ceramic phosphors, irrespective of $Eu^{3+}$ ion concentration, showed the red-orange and the red emission peaked at 593.0 and 619.2 nm respectively. As the concentration of $Eu^{3+}$ ion increased, the excitation spectrum moved into a longer wavelength with the increase of emission intensity. The maximum excitation and the emission spectrum were observed at 0.15 mol of $Eu^{3+}$ ion.

Effects of Eu3+ Concentration on the Photoluminescence Properties of Red-orange Phosphor Gd1-xPO4:Eux3+ (Eu3+ 농도가 적주황색 형광체 Gd1-xPO4:Eux3+의 발광 특성에 미치는 영향)

  • Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.611-616
    • /
    • 2011
  • Red-orange phosphors $Gd_{1-x}PO_4:{Eu_x}^{3+}$ (x = 0, 0.05, 0.10, 0.15, 0.20) were synthesized with changing the concentration of $Eu^{3+}$ ions using a solid-state reaction method. The crystal structures, surface morphology, and optical properties of the ceramic phosphors were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectrophotometry. The XRD results were in accordance with JCPDS (32-0386), and the crystal structures of all the red-orange phosphors were found to be a monoclinic system. The SEM results showed that the size of grains increases and then decreases as the concentration of $Eu^{3+}$ ionincreases. As for the PL properties, all of the ceramic phosphors, irrespective of $Eu^{3+}$ ion concentration, had orange and red emissions peaks at 594 nm and 613 nm, respectively. The maximum excitation and emission spectra were observed at 0.10 mol of $Eu^{3+}$ ion concentration, just like the grain size. An orange color stronger than the red means that $^5D_0{\rightarrow}^7F_1$ (magnetic dipole transition) is dominant over the $^5D_0{\rightarrow}^7F_2$ (electric dipole transition), and $Eu^{3+}$ is located at the center of the inversion symmetry. These properties contrasted with those of a red phosphor $Y_{1-x}PO_4:{Eu_x}^{3+}$, which has a tetragonal system. Therefore, we confirm that the crystal structure of the host material has a major effect on the resulting color.

Synthesis and Optical Properties of BaSiO3:RE3+ (RE = Sm, Eu) Phosphors (BaSiO3:RE3+ (RE = Sm, Eu) 형광체의 합성과 광학 특성)

  • Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.356-362
    • /
    • 2019
  • $BaSiO_3:RE^{3+}$ (RE = Sm or Eu) phosphor powders with different concentrations of activator ions are synthesized using the solid-state reaction method. The effects of the concentration of activator ions on the structural, photoluminescent, and morphological properties of the barium silicate phosphors are investigated. X-ray diffraction data reveals that the crystal structure of all the phosphors, regardless of the type and the concentration of the activator ions, is an orthorhombic system with a main (111) diffraction peak. The grain particles agglomerate together to form larger clusters with increasing concentrations of activator ions. The emission spectra of the $Sm^{3+}$-doped $BaSiO_3$ phosphors under excitation at 406 nm consist of an intense orange band at 604 nm and three weak bands centered at 567, 651, and 711 nm, respectively. As the concentration of $Sm^{3+}$ increases from 1 to 5 mol%, the intensities of all the emission bands gradually increase, reach maxima at 5 mol% of $Sm^{3+}$ ions, and then decrease significantly with further increases in the $Sm^{3+}$ concentration due to the concentration quenching phenomenon. For the $Eu^{3+}$-doped $BaSiO_3$ phosphors, a strong red emission band at 621 nm and several weak bands are observed. The optimal orange and red light emissions of the $BaSiO_3$ phosphors are obtained when the concentrations of $Sm^{3+}$ and $Eu^{3+}$ ions are 5 mol% and 15 mol%, respectively.

Hydration and time-dependent rheology changes of cement paste containing ground fly ash

  • Chen, Wei;Huang, Hao
    • Computers and Concrete
    • /
    • v.11 no.1
    • /
    • pp.39-49
    • /
    • 2013
  • The use of ground fly ash in concrete can increase the risk of slump loss due to the drastic surface change of the particles after the grinding treatment and the accelerated reaction compared to the untreated ash. This study is aimed at the early age hydration and time-dependent rheology changes of cement paste containing ground fly ash. An original fly ash is ground into different fineness and the hydration of cement paste containing the ground fly ash is monitored with the ultrasound propagation method. The zeta potentials of the solid particles are measured and the changes of rheological parameters of the cement pastes with time are analyzed with a rheometer. A particle packing model is used to probe packing of the solid particles. The results show that the early age hydration of the paste is strongly promoted by replacing Portland cement with fly ash up to 30 percent (by mass), causing increase of the yield stress of the paste. The viscosity of a paste containing ground fly ash is lower than that containing the untreated ash, which is explained by the denser packing of the solid particles.

Electrolyte Preparation and Characteristics of La1-xSrxMnO3 for Solid Oxide Fuel Cell (고체전해질형 연료전지용 전해질 제작 및 La1-xSrxMnO3의 특성에 관한 고찰)

  • Rim, Hyung-Ryul;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.9-17
    • /
    • 1996
  • Solid oxide electrolytes of 8mol% YSZ($Y_2O_3$ stabilized zirconia) were prepared at various sintering conditions and their ionic conductivities were measured. The highest ionic conductivity of $10^{-1}S.cm^{-1}$ was obtained when the sintering temperature was 1400oC and the sintering time was 10hr. Also the cathode material, $La_{1-x}Sr_xMnO_3$ was prepared by solid state reaction method and the overpotential, electrical conductivity, and charge transfer resistance between cathode material and YSZ electrolyte were studied. It was found that the optimum doping content of Sr for La was 50mo1%.

  • PDF

Synthesis of an oxynitride-based green phosphor $Ba_3Si_6O_{12}N_2:Eu^{2+}$ via an aqueous-solution process, using propylene-glycol-modified silane

  • Yasushita, Chihiro;Kato, Hideki;Kakihana, Masato
    • Journal of Information Display
    • /
    • v.13 no.3
    • /
    • pp.107-111
    • /
    • 2012
  • An almost pure phase of $Ba_3Si_6O_{12}N_2$ doped with $Eu^{2+}$ was successfully synthesized through the ammonia nitridation of an oxide precursor prepared through an aqueous-solution method, using propylene- glycol-modified silane. The emission peak intensity of the obtained $Ba_3Si_6O_{12}N_2:Eu^{2+}$ was -2.2 times higher than that of the sample prepared through a solid-state reaction method.

Photoluminescence Characteristics of YAG:Ce Phosphor by Combustion Method (연소합성법에 의한 YAG:Ce 형광체의 발광 특성)

  • Lee, Seung-Kyu;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.536-540
    • /
    • 2007
  • The Ce-doped YAG(Yttrium Aluminum Garnet, $Y_3Al_5O_{12}$) phosphor powders were synthesized by combustion method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The XRD patterns show that YAG Phase can form through sintering at $1000^{\circ}C$ for 2 h. This temperature is much lower than that required to synthesize YAG phase via the conventional solid state reaction method. There were no intermediate Phases such as YAP(Yttrium Aluminum Perovskite, $YAlO_3$) and YAM(Yttrium Aluminum Monoclinic, $Y_4Al_2sO_9$) observed in the sintering process. The powders absorbed excitation energy in the range $410{\sim}510\;nm$. Also, the crystalline YAG:Ce showed broad emission peaks in the range $480{\sim}600\;nm$ and had maximum intensity at 528 nm.

Synthesis and Characterization of Y-doped SrTiO3 Powder by Pechini Method (Pechini법에 의한 Y-doped SrTiO3 분말의 합성)

  • Yoon, Mi-Young;Song, R.H.;Shin, D.R.;Hwang, Hae-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 2010
  • 8 mol% Y-doped $SrTiO_3$ powder was synthesized by Pechini method from titanium isopropoxide, strontium nitrate, yttrium nitrate, citric acid and ethylene glycol. A $Y_2Ti_2O_7$ pyrochlore phase-free perovskite powder was obtained by calcining a polymeric resin, which was prepared from a precursor solution, at $500^{\circ}C$ in an air atmosphere. Low temperature calcination could lead to a fine-grained microstructure. In the case of a solid-state reaction, an extended heat-treatment at high temperature in a reduced atmosphere needed to obtain a single phase perovskite $SrTiO_3$.

Development of environmentally friendly inorganic fluorescent pigments, A3V5O14 (A = K and Rb) and Cs2V4O11: Crystal structure, optical and color properties (친환경 무기 형광 안료 A3V5O14 (A = K and Rb) and Cs2V4O11 개발: 결정구조, 광학적 특성 및 착색 특성)

  • Jeong, Gyu Jin;Kim, Jin Ho;Lee, Younki;Hwang, Jonghee;Toda, Kenji;Bae, Byoungseo;Kim, Sun Woog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.47-54
    • /
    • 2020
  • To develop the bright-vivid red- and yellow-inorganic fluorescent pigments with high luminescence properties, A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments were synthesized by a water assisted solid state reaction (WASSR) method and a conventional solid state reaction method. Although impurity peaks corresponding to the AVO3 and AV3O8 (A = K, Rb, and Cs) were observed in all samples prepared, the trigonal structure A3V5O14 (A = K and Rb) and orthorhombic structure Cs2V4O11 were successfully obtained as a main phase. These inorganic pigments showed the broad absorption band (under 550 nm) originated from CT transitions of VO4 polyhedron, and the strong broad red- and green-emission bands due to 3T21A1 and 3T11A1 transitions of the [VO4]3- group. The A3V5O14 (A = K and Rb) and Cs2V4O11 pigments showed a bright-vivid red- and yellow-body color, where the a* values of the A3V5O14 (A = K and Rb) were +35.5 and +45.9, respectively, and b* value of Cs2V4O11 pigments was +50.3. The L* values of the A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments were over +45. These results indicate that the A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments could be an attractive candidate as a bright-vivid red- and yellow inorganic pigments.