• Title/Summary/Keyword: Solid-state interaction

Search Result 112, Processing Time 0.022 seconds

Principles and Analytical Applications of Acousto-Optic Tunable Filters

  • Tran, Chieu D.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.1101-1108
    • /
    • 1995
  • Acousto-optic tunable filter is a compact, all solid state electronic dispersive device. It is based on the acousto-optic interaction in an anisotropic crystal. Compared to conventional grating monochromators. the AOTF has no moving parts, wider spectral tuning range (from UV through visible and near-IR to IR), higher throughput, higher resolution, faster scanning (${\mu}s$) and random wavelength access. These features make it possible to use the filter to develop novel instruments which are not possible otherwise. The instrument development and unique advantages of such AOTF based instruments including the multidimensional fluorimeter, the multiwavelength thermal lens spectrometer, and the detectors for HPLC and flow injection analysis are described.

  • PDF

A Solid-State NMR Study of Water in Poly(vinyl butyral) by Magic Angle Spinning

  • Jeong, Soon-Yong;Han, Oc-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.662-666
    • /
    • 2007
  • Poly(vinyl butyral) (PVB) with different wt% water was studied gravimetrically as well as with 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR). The composition of PVB samples changes during MAS NMR because of the centrifugal force. As MAS time progresses, initially free water was removed fast but bound water also was gradually depleted. More water was diminished at faster spinning speeds, longer spinning time, higher temperatures, and higher initial water contents. As water in PVB was reduced, the chemical shifts and line widths of different types of water and also those of PVB changed. Our results demonstrate that 1H MAS NMR carried out at 10 kHz in less than about 5 minutes is a convenient and sensitive technique to measure: (a) the content variations of different types of water in polymers, (b) the degree of the interaction of water and polymer, and (c) the molecular dynamics of the polymer. Our study can be extended to different soft polymers with other small molecules than water in them.

Mechanism of Energy Transfer and Improvement Moist Stability of BaMg$Al_{10}O_{17}$:$Eu^{2+}$, $Mn^{2+}$ Phosphor

  • Liu, Ru-Shi;Ke, Wei-Chih
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.235-238
    • /
    • 2009
  • BaMg$Al_{10}O_{17}$ (BAM) co-doped with $Eu^{2+}$ and $Mn^{2+}$ was synthesized in a solid-state reaction and their luminescence properties were investigated as functions of the concentrations of the sensitizer and activator. BAM:$Eu^{2+}$ had a broad blue emission band at 450 nm and BAM:$Mn^{2+}$ exhibited green emission at 514 nm. The energy transfer from $Eu^{2+}$ to $Mn^{2+}$ was mainly of the resonance-type via an electric dipole-quadrupole interaction. Additionally, the addition of various fluxes such as $AlF_3$ and $BaF_2$ in the synthesis improves the moist and thermal stability. This is particularly important for the phosphor in white light emitting diodes (LEDs).

  • PDF

MOLECULAR DYNAMICS SIMULATION OF THE INTERACTION BETWEEN CLUSTER BEAMS AND SOLID SURFACES

  • Kang, Hee-Jae;Lee, Min-Wha;Whang, Chung-Nam
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.139-147
    • /
    • 1995
  • The mechanism of the ionized cluster beam deposition has been studied using Molecular Dynamics Simulation. The Embedded Atom Method(EAM) potential were used in the simulation. The impact of a Au95-cluster on Au(100) substrate was studied for the impact energies 0.15-10eV/atom. The dependency of the impact energy of cluster beam was observed. For the cluster energy impact of 10eV per atom, the defects on surface were created and the cluster embedded into substrate as an amorphous state. For the energy of 0.5eV per atom, the defect free homoepitaxial growth was observed and atomic scale nucleation was formated, which are in good agreement with experiment. Thus molecular dynamics simulation is very useful to study the mechanism of the ionized cluster beam deposition.

  • PDF

Synthesis and Characterization of Bis(N,N-dimethyl-2-aminomethylthiophenium)Tetrahalocuprate(Ⅱ)

  • 정찬규;김영인;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.845-849
    • /
    • 1996
  • Bis(N,N-dimethyl-2-aminomethylthiophenium)tetrahalocuprate(Ⅱ) salt, (dmamtH)2CuCl4 and (dmamtH)2CuBr4 were prepared and characterized by spectroscopic (IR, UV-Vis, EPR, XPS), electrochemical method, and magnetic susceptibility measurement. The experimental results reveal that the compounds have pseudotetrahedral symmetry around copper(Ⅱ) site due to the steric hinderance of the bulky 2-(dimethylaminomethyl)thiophene in the complex. The N-H…Cl type hydrogen bonding is expected in (dmamtH)2CuCl4 from the XPS and IR data. Magnetic susceptibility data show that both of the compounds follow Curie-Weiss law in the range of 77-300 K with negative Weiss constant exhibiting antiferromagnetic interaction between copper(Ⅱ) ions in solid state.

Synthesis and Characterization of Dichloro and Dibromo(2-(dimethylaminomethyl)thiophene) Copper(II) Complexes

  • Kim, Young-Inn;Choi, Sung-Nak;Ro, Chul-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.549-553
    • /
    • 1994
  • The 2-(dimethylaminomethyl)thiophene (dmamt) complexes with copper(II) chloride and bromide were prepared and characterized by optical, EPR, XPS spectroscopies and magnetic susceptibility measurements. The low-energy absorption band above 850 nm and the relatively small EPR hyperfine coupling constant ($A_{//}{\simeq}$125 G) indicate the pseudotetrahedral site symmetry around copper(II) ion both in Cu(dmamt)$Cl_2$ and Cu(dmamt)$Br_2$ complexes. The higher satellite to main peak intensity of Cu $2P_{3/2}$ core electron binding energy in XPS spectra also supports the pseudotetrahedral geometry around the copper(II) ions having $CuNSX_2$ chromophores. The distortion from square-planar to pseudotetrahedral symmetry is likely to arise from the steric hindrance of the bulky dmamt ligand in the complex. Magnetic susceptibility study shows that these compounds follow Curie-Weiss law in the temperature range of 77-300 K with positive Weiss constant exhibiting the ferromagnetic interaction between copper(II) ions in solid state.

Improvement of bioavailability of poorly water soluble drugs by size reduction technique

  • Choi, Woo-Sik;Kim, Hyun-Il;Kwak, Seong-Shin;Choi, Hee-Kyu;Ha, Jong-Hak;Hwang, Sun-Hwan;Lee, Dong-Beom
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.225.2-226
    • /
    • 2003
  • The prolonged mechanical grinding process may enhance the bioavailability of the drugs due to the change of solid state such as micronization and decrease of crystallinity. A series of attempts to enhance the bioavailability of insoluble drugs have been made by the fine grinding technique using a planetary mill. The objective of the present study is to investigate the possibility of improving the dissolution properties of poorly water- soluble drugs such as diphenyl hydrantoin (phenytoin) and diphenyl dimethyl dicarboxylate (DDB) based on the molecular interaction between drug and additives during pharmaceutical processing to be related with the bioavailability behavior. (omitted)

  • PDF

Formation CubeSat Constellation, SNIPE mission

  • Lee, Jaejin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.58.4-59
    • /
    • 2021
  • This presentation introduces Korea's SNIPE (Small scale magNespheric and Ionospheric Plasma Experiment) mission, formation flying CubeSat constellation. Observing particles and waves on a single satellite suffers from inherent space-time ambiguity. To observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere, four 6U CubeSats (~ 10 kg) will be launched into a polar orbit of the altitude of ~500 km in 2021. The distances of each satellite will be controlled from 10 km to more than 100 km by formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, solid-state telescope, magnetometer, and Langmuir probe. All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium modules provide an opportunity to upload changes in operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather.

  • PDF

Effect of phenothiazine derivatives on the thermotropic phase transition of liposomal phospholipid membrane

  • Han, Suk-Kyu;Kim, Nam-Hong;Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.75-79
    • /
    • 1986
  • The effect of phenothiazine derivatives on the thermotropic transition of liposomal lipid bilayer made of dipalmitoyl phosphatidylchline and dipalmitoyl phosphatidic acid was investigated with differential scanning calorimetry. The thermograms of the liposomal bilayer incorporated with levomepromazine, chlopromazine, prochloperazine, perphenazine and fluphenazine were obtained and the size of cooperative unit of the transition were calculated from the ratio of the van't Hoff enthalpy change to the calculated enthalpy change of the transition. The results showed that incorporation of phenothiazine derivatives into the liposomal bilayer reduced the transition temperature at which the transition from solid state to liquid-crystalline state occurs, and broadened the thermogram peaks. Phenothiazine derivatives also significantly reduced the size of cooperative unit of the transition. The effect of the drugs was proportional to the concentration of the drug in the bilayer. This means that phenothiazine derivatives might have significant fluidizing effects on the biomembrane. The sizes of cooperative unit were successfully corrlated with phar-macological activities of the drugs and the surface pressure increases of lipid monolayer by these drugs. These correlations might be ascribed to a possible hydrophobic nature of interaction between the biomembrane and the drugs involved in their pharmacology.

  • PDF

Determination of a Weak Exchange Interaction in Magnetically Coupled Cluster System by EPR Singlet-Triplet Transition Lines

  • Cho, Young-Hwan;Hyunsoo So
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.70-71
    • /
    • 2002
  • Exchange-coupled cluster of transition-metal ions are relevant to many different scientific areas, ranging from chemistry to solid-state physics, biology, material science and has been the subject of much research in recent years(1,2). Single crystal EPR spectroscopy works as a very effective tool for the measurement of J values for small exchange interactions. This makes EPR technique very suitable for detection of weak exchange coupling transmitted over long distances via extended atomic and melecular bridges. Large polyoxometallates (3) may provide ideal structural environments for the study of interactions between paramagnetic ions. The detailed nature of magnetic interaction (positive sign and magnitude of J~0.006 $cm^{-1}$ /) was clearly determined for di-copper(II) system by single crystal EPR spectroscopy (4). The single-triplet (S-T) transitions are forbidden by different symmetries of the wave functions. However, when the singlet ground state is mixed into triplet states, the S-T transitions can be allowed and observed as weak lines. These weak S-T lines are positioned symmetrically with respect to the main transitions in the distance equals to 2J from the center of the spectrum. This lines allow one to determine the J-value with very high accuracy when │J│ < hv 0.32 $cm^{-1}$ /. Unfortunately, the S-T transitions in the single crystal were detected by EPR method only in a few complexes until now. We have measured single-triplet transition lines for several magnetically coupled cluster systems and determined their J values accurately. The temperature dependency of J was studied by monitoring the changes in S-T.

  • PDF