• Title/Summary/Keyword: Solid-state hydrogen storage

Search Result 14, Processing Time 0.018 seconds

Improvement of Accuracy for Determination of Isosteric Heat of Hydrogen Adsorption (부피법을 이용한 저온 등량 수소 흡착열 측정법 개선)

  • Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.127-131
    • /
    • 2017
  • Isosteric heat of hydrogen adsorption is one of the most important parameters required to describe solid-state hydrogen storage systems. Typically, it is calculated from adsorption isotherms measured at 77K (liquid N2) and 87K (liquid Ar). This simple calculation, however, results in a high degree of uncertainty due to the small temperature range. Therefore, the original Sievert type setup is upgraded using a heating and cooling device to regulate the wide sample temperature. This upgraded setup allows a wide temperature range for isotherms (77K ~ 117K) providing a minimized uncertainty (error) of measurement for adsorption enthalpy calculation and yielding reliable results. To this end, we measure the isosteric heats of hydrogen adsorption of two prototypical samples: activated carbon and metal-organic frameworks (e.g. MIL-53), and compared the small temperature range (77~87K) to the wide one (77K ~ 117K).

Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering (고상소결에 의한 방사성 희토류산화물의 고화)

  • Ahn, Byung-Gil;Park, Hwan-Seo;Kim, Hwan-Young;Lee, Han-Soo;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare eath oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix(ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilzed with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

Electrochemical Properties of Li1.1V0.75W0.075Mo0.075O2/Graphite Composite Anodes for Lithium-ion Batteries

  • Kim, Hyung-Sun;Kim, Sang-Ok;Kim, Yong-Tae;Jung, Ji-Kwon;Na, Byung-Ki;Lee, Joong-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.65-68
    • /
    • 2012
  • Novel type $Li_{1.1}V_{0.9-2x}W_xMo_xO_2$ powders were prepared by a solid-state reaction of $Li_2CO_3$, $V_2O_3$, $WO_2$ and $MoO_2$ precursors in a nitrogen atmosphere containing 10 mol % hydrogen gas, and assessed as anode materials in lithium-ion batteries. The specific charge and discharge capacities of the $Li_{1.1}V_{0.9-2x}W_xMo_xO_2$ anodes were higher than those of the bare $Li_{1.1}V_{0.9}O_2$ anode. The cyclic efficiency of these anodes was approximately 73.3% at the first cycle, regardless of the presence of W and Mo doping. The composite anode, which was composed of $Li_{1.1}V_{0.75}W_{0.075}Mo_{0.075}O_2$ (20 wt %) and natural graphite (80 wt %), demonstrated reasonable specific capacity, high cyclic efficiency, and good cycling performance, even at high rates without capacity fading.

Investigation on Formation Behaviors of Synthesized Natural Gas Hydrates (합성 천연가스의 하이드레이트 형성 거동 연구)

  • Lee, Jong-Won;Lee, Ju-Dong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.890-893
    • /
    • 2012
  • Gas hydrates are solid crystal structures formed by enclathration of gaseous guest species into 3-dimensional lattice structure of hydrogen-bonded water molecules. These compounds can be potentially used as an energy storage/transportation medium because they can hold a large amount of gas in a small volume of the solid phase. In addition, huge amount of natural gas, buried in seabeds or permafrost region in the form of the solid hydrate, is regarded as a future energy source. In this study, synthesized natural gas, whose composition is 90.0 mol% of methane, 7.0 mol% of ethane, and 3.0 mol% of propane, was used to identify formation behaviors of natural gas hydrates for the purpose of applying the gas hydrate to a storage/transportation medium of natural gas. According to the experimental results obtained by means of the solid-state NMR and high-resolution powder XRD methods, it is found that formed natural gas hydrates have crystal structure of the structure-II hydrate, and that methane occupies both small and large cages, while the others only occupy large ones. In addition, both the NMR spectroscopy and the gas chromatograph showed that there exists preferential occupation among the natural gas components during the hydrate formation. Compositional changes after the hydrate formation revealed that the preferential occupation is in order of propane, ethane, and methane (propane is the most preferential guest species when forming natural gas hydrates).