• Title/Summary/Keyword: Solid-State Electrolyte

Search Result 205, Processing Time 0.02 seconds

Selective Oxidation of 2,6-di-tert-butylphenol by Oxygen Adducted Pentadentate Schiff Base Cobalt (Ⅱ) Activated Catalysts and Electrochemical Properties of Cobalt (Ⅱ) Catalysts in Aprotic Solvents (비수용매에서 산소첨가된 다섯자리 Schiff Base Cobalt (Ⅱ) 활성촉매들에 의한 2,6-di-tert-butylphenol의 선택산화와 전기화학적 성질)

  • Chjo, Ki-Hyung;Choi, Yong-Kook;Kim, Sang-Bock;Lee, Song-Ju;Kim, Jong-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.689-698
    • /
    • 1991
  • Activated oxidation catalysts are generated by the treatment of pentadentate Schiff base cobalt(Ⅱ) complexes with the oxygen saturated DMF solution. Oxidation of 2,6-di-tert-butylphenol by homogeneous oxidation catalysts of superoxo type pentadentate schiff base cobalt(Ⅲ) complexes yields 2,6-di-tert-butylbenzoquinone(BQ) as a major product. And $O_2$/Co mole ratio of homogeneous oxidative catalysts such as [Co(Ⅲ)(sal-DET)]$O_2$ and [Co(Ⅲ)(sal-DPT)]$O_2$by PVT method of the oxygen absorption in DMSO and pyridine solution was 1:1, 1:1.52 in DMF solution and ${\mu}$-peroxo type cobalt(Ⅲ) complexes formed at solid state. The redox reaction processes of superoxo type cobalt(Ⅲ) complexes as homogeneous oxidation catalysts were investigated by cyclic voltammetry and DPP method at a glassy carbon electrode. As a result of electrochemical measurements the reduction processes of oxygen adducted superoxo type cobalt(Ⅲ) complexes occurred to four steps including prewave of $O_2$-in 0.1M TEAP-DMSO and 0.1 M TEAP-Pyridine as supporting electrolyte solution.

  • PDF

Characteristics of Copper Vanadium Oxide$(Cu_{0.5}V_2O_5)$ Cathode for Thin Film Microbattery (구리-바나듐 산화물 박막의 양극 특성 및 전 고상 전지의 제작)

  • Lim Y. C.;Nam S. C.;Park H. Y.;Yoon Y. S.;Cho W. I.;CHo B. W.;Chun H. S.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.219-223
    • /
    • 2000
  • All-solid state lithium rechargeable thin film batteries were fabricated with the configuration of$Cu_{0.5}V_2O_5/Lipon/Li$ using sequential thin film techniques. Copper vanadium oxide thin films and Lipon thin films were prepared by DC reactive dual source magnetron sputtering and RF magnetron sputtering, respectively. According to XRD analysis, we found out that copper vanadium oxide thin films were amorphous. The electrochemical behaviour of them was examined in half cell system using EC : DMC(1:1 in IM $LiPF_5$) liquid electrolyte. The ionic conductivity of Lipon thin film was $1.02\times10^{-6}S/cm$ at $25^{\circ}C$ and $Cu_{0.5}V_2O_5/Lipon/Li$ cell showed that the discharge capacity was about $50{\mu}Ah/cm^2{\mu}m$ beyond 500cyc1es.

Electrochemical Characteristics of Ru Added Li4Ti5O12 as an Anode Material (Ru를 첨가한 음극활물질 Li4Ti5O12의 전기화학적 특성)

  • Cho, Woo-Ram;Na, Byung-Ki
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.433-438
    • /
    • 2014
  • There is an increasing interest in the development of rechargeable batteries suitable for use in both hybrid electric vehicles and energy storage systems that require higher charge & discharge rates, bigger battery sizes and increased safety of the batteries. Spinel-type lithium titanium oxide ($Li_4Ti_5O_{12}$) as a potential anode for lithium ion batteries has many advantages. It is a zero-strain materials and it experiences no structural change during the charge/discharge precess. Thus, it has long cycle life due to its structural integrity. It also offers a stable operation voltage of approximately 1.55 V versus $Li^+/Li$, above the reduction potential of most organic electrolyte. In this study, Ru added $Li_4Ti_5O_{12}$ composites were synthesized by solid state process. The characteristics of active material were investigated with TGA-DTA, XRD, SEM and charge/discharge test. The capacity was reduced when Ru was added, however, the polarization decreased. The capacity rate of $Li_4Ti_5O_{12}$ with Ru (3%, 4%) addition was reduced during the charge/discharge precess with 10 C-rate as a high current density.

Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries (리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향)

  • Im, Chae-Nam;Ahn, Tae-Young;Yu, Hye-Ryeon;Ha, Sang Hyeon;Yeo, Jae Seong;Cho, Jang-Hyeon;Yoon, Hyun-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3 (K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계)

  • Ham, Choul-Hwan;Lim, Sung-Ki;Lee, Chung-Kee;Yoo, Seung-Eul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K^+-{\beta}/{\beta}"-Al_2O_3$ in the ternary system $K_2O-MgO-Al_2O_3$ was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of ${\beta}"-Al_2O_3$ phase with a maximum fraction. As a composition range, the mole ratio of $K_2O$ to $Al_2O_3$ was changed from 1:5 to 1:6.2 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between $1000^{\circ}C$ and $1500^{\circ}C$. At $1000^{\circ}C$, the ${\beta}/{\beta}"-Al_2O_3$ phases began to form resulted from the combining of ${\alpha}-Al_2O_3$ and $KAlO_2$ and increased with temperature rising. All of ${\alpha}-Al_2O_3$ phase disappeared to be homogenized to the ${\beta}/{\beta}"-Al_2O_3$ phase at $1200^{\circ}C$. Near the temperature at $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase showed a maximum value with the composition of $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$. At temperatures above $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase decreased gradually owing to $K_2O$ loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.

  • PDF