• Title/Summary/Keyword: Solid to solid state

Search Result 2,753, Processing Time 0.03 seconds

Process Analysis for Rheology Forming Considering Flow and Solidification Phenomena in Lower Solid Fraction (저고상율 소재의 유동 및 응고현상을 고려한 레올로지 성형공정해석)

  • Jung, Young-Jin;Cho, Ho-Sang;Kang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.156-164
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocity and temperature fields during rheology forming process, the earth governing equation correspondent to the liquid and solid region are adapted. Therefore, each numerical models considering the solid and liquid region existing within the semi-solid material have been developed to predict the deflect of rheology forming gnarls. The Arbitrary Boundary Maker And Cell (ABMAC) method is employed to solve the two-phase flow model of the Navier-Stokes equation. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity. The liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

  • PDF

Solidification Analysis for Surface Defect Prediction of Rheology Forming Process Considering Flow Phenomena of Liquid and Solid Region (액상과 고상의 유동현상을 고려한 레오로지 성형공정의 표면결함예측을 위한 응고해석)

  • Seo, Pan-Ki;Jung, Young-Jin;Kang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1971-1981
    • /
    • 2002
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocities and temperature fields during rheology forming process, the each governing equations correspondent to the liquid and solid region are adapted. Therefore, each numerical model considering the solid and liquid coexisting region within the semi-solid material have been developed to predict the defects of rheology forming parts. The Arbitrary Boundary Maker And Cell(ABMAC) method is employed to solve the two-Phase flow model of the Navier-Stokes equation. Theoretical model basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on using the liquid and solid viscosity. The Liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1999.04a
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF

Characteristic of Hydrogen Generation from Solid-State NaBH4 and Fuel Cell Operation for Fuel Cell Aircraft (연료전지 항공기를 위한 고체상태 NaBH4의 수소발생 및 연료전지 구동 특성)

  • Lee, Chung-Jun;Kim, Tae-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.858-865
    • /
    • 2011
  • This paper describes the characteristics of hydrogen generation from solid-state $NaBH_4$ and fuel cell operation for fuel cell aircraft. The solid-state $NaBH_4$ was used for a high hydrogen storage density, and was reacted with hydrochloric acid to generate hydrogen. The hydrogen generation rate for the solid-state $NaBH_4$ reaction was measured at various conditions. As a result, the hydrogen generation rate was increased with the feed rate and concentration of hydrochloric acid, while not be affected by the reaction temperature. A fuel cell was connected with the solid-state $NaBH_4$ hydrogen generator. The stable power output was obtained at the gradual and sudden increases of electric loads.

Finite Element Analysis of Extrusion Process in Semi-Solid State (반용융 재료의 압출공정에 관한 유한요소해석)

  • 황재호;고대철;민규식;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.5-15
    • /
    • 1997
  • It is the objective of this study that by conducting the serni-solid extrusion using A12024, the effect of various process variables on the quality of extruded product and extrusion force is understood. The results of experiment are compared with those of finite element simulation in order to verify the effectiveness of the developed FE-simulation code. In order to simulate densification in the deformation of serni-solid material, the semi-solid material is assumed to be composed of solid region as porous skeleton following compressible visco-plastic model and liquid region following Darcy's equation for the liquid flow saturated in the interstitial space. Then the flow and deformation of the semi-solid alloy are analyzed by coupling the deformation of the porous skeleton and the flow of the eutectic liquid. It is assumed that initial solid fraction is homogeneous. Yield and plastic potential function presented by Kuhn and constitutive model developed by Gunasekera are used for solid skeleton.

  • PDF

Advances in the Technology of Solid State Hydrogen Storage Methods Using Novel Nanostructured Materials (나노구조물질을 이용한 고체수소저장 기술 동향)

  • Zacharia, Renju;Kim, Keun Young;Nahm, Kee Suk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.439-451
    • /
    • 2005
  • This article provides a panoramic overview of the state-of-the-art technologies in the field of solid-state hydrogen storage methods. The emerging solid-state hydrogen storage techniques, such as nanostructured carbon materials, metal organic framework (MOFs), metal and inter-metal hydrides, clathrate hydrates, complex chemical hydride are discussed. The hydrogen storage capacity of the solid-sate hydrogen storage materials increases in proportion to the surface area of the solid materials. Also, it is believed that new functional nanostructured materials will offer far-reaching solutions to the development of on-board hydrogen storage system for the application of the transportation vehicles.

Solid Circulation Characteristics of Oxygen Carrier for Chemical Looping Combustion System at Ambient Temperature and Pressure (케미컬루핑 연소시스템을 위한 산소전달입자의 상온-상압 고체순환특성)

  • YOON, JOOYOUNG;KIM, HANA;KIM, JUNGHWAN;LEE, DOYEON;BAEK, JEOM-IN;RYU, HO-JUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.384-391
    • /
    • 2017
  • Effects of operating variables on solid circulation rate were measured and discussed using two-interconnected circulating fluidized bed system at ambient temperature and pressure. OCN 706-1100 particles were used as oxygen carrier. The measured solid circulation rates increased as the lower loop seal gas flow rates and the solid height in the fuel reactor increased. Suitable operating conditions to avoid choking of the air reactor were confirmed. Continuous long-term operations of steady-state solid circulation were also demonstrated at two different conditions based on the operating window.

Solid Particle Behavior Analysis in Rheology Material by Fortran 90 (레오로지 소재의 고상입자 변형거동 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.234-237
    • /
    • 2008
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, Rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology Process to be Performed. General Plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape. In addition, the dynamics behavior compare with Okano equation to Power law model which is viscosity equation.

  • PDF

Glucoamylase Production in Batch and Fed-Batch Solid State Fermentation: Effect of Maltose or Starch Addition

  • Bertolin, Telma Elita;Jorge Alberto Vieira Costa;Gean Delise Leal Pasquali
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • Maltose and soluble starch were used as secondary sources of carbon for glucoamylase production by Aspergillus awamori in solid state fermentation. During batch cultivation, maltose above 2.5%(w/w) repressed glucoamylase production, but, by adding either 2.5% (w/w) maltose or 1.25% (w/w) soluble starch to fed-batch cultivations, glucoamylase activity was increased by 15% and 170% over standard medium, respectively. The data showed that maltose is a weak inducer of glucoamylase production in solid stat fermentation.

  • PDF

Solid State Dynamic Nuclear Polarization of 1H Nuclear Spins at 0.3 T and 4.2 K

  • Shim, Jeong Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.114-118
    • /
    • 2017
  • Here, I report solid state Dynamic Nuclear Polarization (DNP) of $^1H$ nuclear spins at 0.3 T and 4.2 K. The DNP polarizer was developed based on a commercial X-band Electron Spin Resonance (ESR) modified for DNP, in combination with a NMR console and a liquid-Helium cryostat. By detuning magnetic field, DNP spectrum was measured to find the optimal condition. At +3 mT detuned from on-resonance field, $^1H$ NMR signal of 60:40 glycerol/water frozen solution doped with 20 mM perdeuterated-Tempone was amplified 43 times. The $^1H$ spin polarization obtained at 4.2 K is over 3100 times higher than that at 300 K. The width of the DNP spectrum, which is five times broader than ESR spectrum, is inconsistent with solid effect or thermal mixing, and presumably suggests a different DNP mechanism.