• Title/Summary/Keyword: Solid separation efficiency

Search Result 119, Processing Time 0.022 seconds

Acid Fermentation Characteristic of Food Wastes According to the Organic Loading Rate (유기물부하에 따른 음식물찌꺼기의 산발효 특성)

  • Park, Jin-Sik;Ahn, Chul-Woo;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.975-982
    • /
    • 2006
  • This study has been conducted to optimum operating conditions for effective acid fermentation according to OLR(organic loading rate) in the mesophilic and thermophilic acid fermentation process. The results are summarized as follows. In order to obtain reasonable acid fermentation efficiency in performing acid fermentation of food wastes in thermophilic condition, organic loading rate was required below 20 gVS/L.d. As $SCOD_{Cr}/TKN,\;SCOD_{Cr}/T-P$ of thermophilic acid fermented food wastes In organic loading rate 20 gVS/L.d were 18.9, 73.4 respectively, it was possible to utilize as external carbon source for denitrification in sewage treatment plant after solid-liquid separation as well as co-digestion of fermented food wastes and sewage sludge.

Polymer Electrolyte Membranes and their Applications to Membranes, Fuel Cells and Solar Cells

  • Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.29-32
    • /
    • 2003
  • Polymer electrolyte membranes are developed for the applications to facilitated transport membranes, fuel cells and solar cells. The polymer electrolyte membranes containing silver salt show the remarkably high separation performance for olefin/paraffin mixture in the solid state; the propylene permeance is 45 GPU and the ideal selectivity of propylene/propane is 15,000. For fuel cell membranes, the effects of the presence and size of the proton transport channels on the proton conductivity and methanol permeability were investigated. The cell performance for dye-sensitized solar cells employing polymer electrolytes are measured under light illumination. The overall energy conversion efficiency reaches 5.44 % at 10 ㎽/$\textrm{cm}^2$, to our knowledge the highest value ever reported in the polymer electrolytes.

  • PDF

Production of Eco-friendly Aminotosan® Fertilizer from Waste Livestock Blood using Chitosan Coagulation

  • Kim, Hyeon-Jeong;Shin, Myung-Seop;Jeon, Yong-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.724-730
    • /
    • 2015
  • The aim of this study was to produce Aminotosan$^{(R)}$ fertilizer using optimized chitosan coagulant from waste livestock blood. Amino-acid fertilizer was produced by pretreated livestock blood. Chitosan coagulant was aggregated with amino-acid fertilizer to produce Aminotosan$^{(R)}$. Optimized coagulation conditions were set using chitosan coagulant such as 10% citric acid and 500 ppm chitosan coagulant by analysis of CST and TTF. The efficiency of coagulation by chitosan coagulant under the optimal conditions was better than chemical coagulants. After solid/liquid separation for coagulated amino-acid fertilizer, Aminotosan$^{(R)}$ fertilizer which added eco-friendly and aesthetic functions was produced.

A Study on the Optimization of Sedimentation Efficiency through Controlling Stirring Speed and Baffle Angle (교반속도 및 Baffle 각도 조절에 따른 침전지 효율 최적화 연구)

  • Kwak, Sung-Keun;Kim, Choong-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.69-75
    • /
    • 2020
  • This study was conducted to improve the solid-liquid separation efficiency of clarifiers. To do so, the study did a bio-flocculation experiment simply by controlling the stirring speed (rpm) and baffle angle of a clarifier on a lab scale, but without using a coagulant. For the purpose of the experiment, the feed wall of a clarifier was so improved that a baffle could be installed on the clarifier. Then, it was ensured to change its stirring speed (to 0.0rpm, 0.6rpm, and 1.2rpm), with the angle fixed at 10°. As a result, it was found that concentration efficiency increased by 2.0%, and effluent removal efficiency (SS concentration) by 7.8%, at a stirring speed of 0.6ppm. This indicates the bio-coagulation efficiency of sludge increased with changing stirring speeds. Then, the baffle angle of the sedimentation unit was changed to analyze how the changed baffle angle would affect the sedimentation of sludge. As a result, it was found that the compression of sludge interface was very effective at a baffle angle of 20°. It is hoped that these experimental findings will be useful in improving the sedimentation efficiency of circular clarifiers.

Experimental study on feasibility test for removing particles in air scouring membrane backwash water with metal membrane (금속막을 이용한 저압 막 공기병용 역세척수 처리 타당성 연구)

  • Park, No-Suk;Yoon, Sukmin;Moon, Yong-Taik;Lee, Sun-Ju;Park, Sunghyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.251-259
    • /
    • 2015
  • The main objective of this research is to study feasibility for applying metal membrane to remove particles from air scouring membrane backwash water. Also, the research was conducted to investigate the influence of polyamine coagulation on floc growth in membrane backwash water as pretreatment for removal particles. From the results of experiments for evaluating the influence of polyamine coagulation on floc growth, it was investigated that particles in the rage of $2{\sim}50{\mu}m$ grew up to $30{\sim}5,000{\mu}m$. In addition, all six metal membranes showed lower removal efficiency, which was 0.87~13.89%, in the case of no polyamine coagulant. On the other hand, in the case of injecting polyamine coagulant, those did extremely high efficiency in 56~92%. From the SEM(Scanning Electron Microscope) images of filtered wiremesh and metal foam membrane, sieve effects were predominant for liquid solid separation in wiremesh and adsorption and diffusion capture effects were predominant in metal foam membrane.

Application of Anaerobic Membrane-Fermenter for the Recovery of Volatile Fatty Acids from Organic Liquid Sludge (유기성 액상 슬러지로부터 휘발성 지방산의 회수를 위한 혐기성 막-발효기의 적용)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2004
  • As the experimental results of membrane application for the production and recovery of volatile fatty acids, suspended solids concentration, the number of acid producing bacteria and organic acid concentration increased with membrane coupling in the fermenter. The application of membrane for the efficiency increase of solid-liquid separation and fermentation made the number of acid producing bacteria increase in the fermenter, thus acid forming rate showed higher value than that of membrane-free fermenter. Membrane-coupled fermenter was believed to be an effective technology for the improvement of recovery efficiency of volatile fatty acids from organic sludge.

A Study on the Separation of Activated Sludge by Dissolved Air Flotation (가압부상법(加壓浮上法)에 의한 활성(活性)슬러지 혼합액(混合液)의 고액분리(固液分離)에 관한 연구(研究))

  • Yang, Sang Hyun;Ra, Deog Gwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.21-29
    • /
    • 1985
  • An effective technique of sludge separation is required for concentrated activated sludge process. The dissolved-air flotation (DAF) has been shown to be efficient process for sludge separation. The factors affecting DAF process for activated sludge separation are type and concentration of sludge, air/solid ratio, ratio of pressurized water flow, pressure, sludge detention time, temperature, sludge and hydraulic loading rate, recycle flow rate of sludge and type and quantity of chemical aid. In order to study the optimal operation condition for sludge separation, the influence factors such as type and concentration of sludge, ratio of pressurized water flow and pressure are investigated by the batch and continuous reactor experiments of DAF and sedimentation test. By the experimental investigation, the results are as follows; 1. For the bulking and concentrated sludge, DAF is more effective than sedimentation for the sludge separation. 2. In DAF, the critical ratio of pressurized water flow exist. The critical value varies with the pressure in the tank. That is, according to the pressure changes from 3 to $5kg/cm^2$, the critical value varies from 0.25 to 0.67 accordingly. 3. Pressure affects the ratio of pressurized water flow, but it does not show any influence upon the DAF efficiency directly. 4. Continuous experimental results was not better than those of batch.

  • PDF

A Study on Removal of Dissolved Organic Matter and Phosphorus in Eutrophic Lake by Coagulation Process Using Powdered Activated Carbon (분말활성탄 응집침전 공정을 이용한 부영양화 호소수의 용존 유기물 및 인의 제거 연구)

  • Cho, Kyung Chul;Lee, Min Hee;Park, Jung Hwan;Jung, Jongtai
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.629-635
    • /
    • 2012
  • This study was conducted to evaluate the removal behaviors of DOM(dissolved organic matter) and phosphorus in eutrophic lake water by coagulation process with PAC(powdered activated carbon). It was observed that the removal characteristic of soluble matter was different from that of dissolved one, and the removal of DOM was effected by both pH and coagulant dosage. It was founded that PAC could increase the removal efficiency by an adsorption of DOM in coagulation process. A formation of soluble and colloidal matters resulted in the degradation of phosphorus removal efficiency in a chemical precipitation process. The phosphorus removal efficiency could be enhanced by an absorption of colloidal matter and dissolved complex with PAC addition. In addition, the PAC addition caused the increase of floc density in coagulation process, that led to the rise of sedimentation rate, and resulted in a significant improvement of solid-liquid separation efficiency.

Method of Reducing Separation Membrane Fouling Using Microbubbles (마이크로버블을 이용한 분리막 파울링 저감방법)

  • Kyung-Hwan Ku;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Due to water shortages caused by water pollution and climate change, total organic carbon (TOC) standards have been implemented for wastewater discharged from public sewage treatment facilities. Furthermore, there is a growing interest and body of research pertaining to the reuse of sewage treatment water as a secure alternative water resource. The membrane bio-reactor (MBR) method is commonly used for advanced wastewater treatment because it can remove organic and inorganic ions and it does not require or emit any chemicals. However, the MBR process uses a separation membrane (MF), which requires frequent film cleaning due to fouling caused by a high concentration of mixed liquor suspended solid (MLSS). In this study, process improvement and microbubble cleaning efficiency were evaluated to improve the differential pressure, water flow, and MF fouling, which are the biggest disadvantages of operating the MF. The existing MBR method was improved by installing a precipitation tank between the air tank and the MBR tank in which raw water was introduced. Microbubbles were injected into a separation membrane tank into which the supernatant water from the precipitation tank was introduced. The microbubble generator was operated with a 15 day on, 15 day off cycle for 5 months to collect discharged water samples (4L) and measure TOC. As the supernatant water from the precipitation tank flowed into the separation membrane tank, about 95% of the supernatant water MLSS was removed so the MF fouling from biological contamination was prevented. Due to the application of microbubbles to supernatant water from the precipitation tank, the differential pressure of the separation membrane tank decreased by 1.6 to 2.3 times and the water flow increased by 1.4 times. Applying microbubbles increased the TOC removal rate by more than 58%. This study showed that separately operating the air tank and the separation membrane tank can reduce fouling, and suggested that applying additional microbubbles could improve the differential pressure, water flow, and fouling to provide a more efficient advanced treatment method.

Removal of Suspended Solids in Aquacultural Recirculating Water by Magnetic Fluid Separation (자성 유체분리에 의한 양어장 순환수내 부유 고형물의 제거)

  • KIM Yong-Ha;YEO Ryoung-Mo;SUH Kuen-Hack;KIM Hang-Goo;CHUNG Uoo-Chang;KIM Soon-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.649-653
    • /
    • 1999
  • A magnetic fluid separation technology was confirmed to be very effective to remove the suspended solids (SS) from aquacultural recirculating water, In this study, the effects of operating variables on the characteristics of SS removal were investigated through the test runs using magnetite of 2 $\mu$m mean diameter as magnetic powder. Magnetic flocculation here formed by adsorbing fine magnetites on the surface of suspended solid was observed. The strength of magnet was of significance in determining the SS removal efficiency as well as the capacity of the equipment. In addition, the SS removal efficiency decreased with an increase in the superficial liquid velocity, but the effect became negligible when the mass ratio of magnetite to the suspended solids was higher than 1.0.

  • PDF