• Title/Summary/Keyword: Solid polymer electrolyte

Search Result 166, Processing Time 0.04 seconds

Study of Electrolysis Ozone Generator Using Polymer Electrolyte (고분자 전해질을 이용한 전기분해식 오존 발생에 관한 연구)

  • Park, Jong-Eun;Lee, Ju-Bong;Lee, Hong-Ki;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.906-908
    • /
    • 1999
  • The application of ozone solid polymer electrolyte or Membrel water electrolysis cells with $PbO_2$ anodes for anodic generation of ozone in electrolyte-free water is reported. Maximum yields were obtained at a temperature of $25^{\circ}C-30^{\circ}C$ and current density of about 1A/$cm^2$. The current efficiency was not found to depend on ozone concentration in the feed water. exclusive transference of electric current by protons absence of convection in the electrolyte and high oxygen oversaturatation in the vicinity of electrode

  • PDF

Polymer Electrolytes and their Application to Solar Cells and Separation Membranes (촉진수송 및 태양전지용 분리막)

  • 강용수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.03a
    • /
    • pp.13-35
    • /
    • 2004
  • Metal Complexes in Macromolecules Applications of Polymer Electrolyte Membranes Facilitated Transport in Solid State Roles of Electrolytes in Solar Cells - Electrolytes :ㆍI- and $I_3$-conductor ㆍelectron barrier or hole conductor ㆍelectrochemical redox reaction media ㆍinterfacial contactor for dye, $TiO_2$ and electrode ㆍmechanical separator (omitted)

  • PDF

Solid State Dye-Sensitized Solar Cells Employing Polymer Electrolytes : Oligomer Approach

  • Kang, Yong-Soo;Lee, Yong-Gun;Kang, Moon-Sung;Kim, Jong-Hak;Char, Kook-Choen
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.63-64
    • /
    • 2006
  • The solid state dye-sensitized solar cells (DSSCs) employing polymer electrolytes show high overall energy conversion efficiency as high as 4.5 % at 1 sun conditions. The improved efficiency may be primarily due to the enlarged interfacial contact area between the electrolyte and dyes in addition to the increased ionic conductivity, which were done by utilizing liquid oligomers, followed by in situ self-solidification, to form the solid DSSCs: "Oligomer Approach". The effect of the charge transfer resistance at the counter electrode side on the efficiency has also been investigated.

  • PDF

Preparation and Electrochemical Characteristics of Polymer Electrolyte Based on MCM-41/Poly(ethylene oxide) Composites (MCM-41/Po1y(ethylene oxide) 복합체로 구성된 고분자 전해질의 제조와 전기화학적 특성)

  • Kim Seok;Kang Jin-Young;Lee Sung-Goo;Lee Jae-Rook;Park Soo-Jin
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.403-407
    • /
    • 2005
  • In this work, the solid polymer electrolyte (SPE) composites, which are composed of poly(ethylene oxide) (PEO), mesoporous mobil crystalline material-41 (MCM-41), and lithium salt, are prepared in order to investigate the influence of MCM-41 contents on the ionic conductivity of the composites. The crystallinity of the SPE composites was evaluated using differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The ionic conductivity of the SPE composites was measured by the frequency response analyzer (FRA). As a result, the addition of MCM-41 into the polymeric mixture prohibited the growth of PEO crystalline domain due to the mesoporous structures of the MCM-41. The $P(EO)_{16}LiClO_4$/MCM-41 electrolytes show an increased ion conductivity as a function of MCM-41 content up to 8 $wt\%$ and a slightly decreased conductivity over 8 $wt\%$. These ion conductivity characteristics are dependent on a change of polymer crystallinity in the presence of MCM-41 system.

Quantification of Methanol Concentration in the Polymer Electrolyte Membrane of Direct Methanol Fuel Cell by Solid-state NMR

  • Kim, Seong-Soo;Paik, Youn-Kee;Kim, Sun-Ha;Han, Oc-Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.96-102
    • /
    • 2008
  • Direct quantification of methanol in polymer electrolyte membrane (PEM) by solid-state nuclear magnetic resonance (NMR) spectroscopy was studied and the methanol concentrations in PEM produced by crossover and diffusion were compared. The error range of the quantification was not smaller than ${\pm}15%$ and the amount of the methanol crossed over in our direct methanol fuel cells (DMFCs) was less than the methanol diffused to PEM. The methanol concentration in the PEM of the DMFC operated at different current densities were equivalent.

Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte (복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성)

  • Han, Jong Su;Yu, Hakgyoon;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.100-105
    • /
    • 2021
  • Recently, all-solid-state batteries have attracted much attention to improve safety of rechargeable lithium batteries, but the solid-state batteries of conductive ceramics or solid polymer electrolytes show poor electrochemical properties because of several problems such as high interfacial resistance and undesired reactions. To solve the problems of the reported all-solid-state batteries, a hybrid solid electrolyte is suggested, in this study, NASICON-type nanoparticle Li1.5Al0.5Ti1.5P3O12 (LATP) conductive ceramic, PVdF-HFP, and a carbonate-based liquid electrolyte were composited to prepare a quasi-solid electrolyte. The hybrid solid electrolyte has a high voltage stability of 5.6 V and shows an suppress effect of lithium dendrite growth in the stripping-plating test. The LiNi0.83Co0.11Mn0.06O2 (NCM811)-based battery with the hybrid solid electrolyte exhibits a high discharge capacity of 241.5 mAh/g at a high charge-cut-off voltage of 4.8V and stable electrochemical reaction. The NCM811-based battery also shows 139.4 mAh/g discharge capacity without short circuit or explosion at 90℃. Therefore, the LATP-based hybrid solid electrolyte can be an effective solution to improve the safety and electrochemical properties of rechargeable lithium batteries.

Electrochemical Properties of LiFePO4 Cathode Materials for Lithium Polymer Batteries (리튬폴리머전지용 정극활물질 LiFePO4의 전기화학적 특성)

  • Kong Ming-Zhe;Kim Hyun-Soo;Gu Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.519-523
    • /
    • 2006
  • $LiFePO_4$ has been received attention as a potential cathode material for the lithium secondary batteries. In our study, $LiFePO_4$ cathode active materials were synthesized by a solid-state reaction. It was modified by coating $TiO_2$ and carbon in order to enhance cyclic performance and electronic conductivity. $TiO_2$ and carbon coatings on $LiFePO_4$ materials enhanced the electronic conductivity and its charge/discharge capacity. For lithium polymer battery applications, $LiFePO_4$/solid polymer electrolyte (SPE)/Li and $LiFePO_{4}-TiO_{2}/SPE/Li$ cells were characterized by a cyclic voltammetry and charge/discharge cycling. The electrode with $LiFePO_{4}-carbon-TiO_{2}$ in PVDF-PC-EC-$LiClO_{4}$ electrolyte showed promising capacity of above 100 mAh/g at 1C rate.

Synthesis and Physicochemical Properties of Branched Solid Polymer Electrolytes Containing Ethylene Carbonate Group (에틸렌 카보네이트기를 함유하는 가지형 고체 고분자전해질의 합성 및 물리화학적 특성)

  • Kim, Doo-Hwan;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.150-155
    • /
    • 2015
  • In this study polymer electrolytes containing ethylene carbonate group which have a high dielectric constant and poly(ethylene glycol) as branches were prepared by the Williamson reaction between poly(ethylene glycol) methyl ether and block copolymers composed of glycerol-1,2-carbonate and 4-chloromethyl styrene. Interestingly, the highest ionic conductivity of $1.75{\times}10^{-5}S\;cm^{-1}$ was observed from the polymer electrolyte having 7 mol% of ethylene carbonate and the [EO]:[Li] ratio of 32:1. Moreover, it was found that the electrochemical stability of polymer electrolyte was achieved up to 5.5 V because of the presence of ethylene carbonate.