• Title/Summary/Keyword: Solid particles

Search Result 953, Processing Time 0.048 seconds

Compression and Dewatering of Chinese Cabbage (배추의 압축탈수특성에 관한 연구)

  • Kim, Y.J.;Lee, D.H.;Lee, Y.B.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.1
    • /
    • pp.3-8
    • /
    • 1994
  • An experiment on the expression and dewatering of chinese cabbage was conducted in order to investigate its dewatering behavior. Chopped cabbage was packed into cylinder and pressed by piston upto the predetermined pressure on Instron-1000. The rates of dewatering were affected domintantly by the applied pressure, but not significantly by the packed amount of cabbage in the cylinder. The pressure effect was increased very abruptly at first, but the increase rate was very low at high pressure greater than 20 MPa, showing great deviation from linear dependence of flow rate on pressure in Darcy's Law. Therefore, water expression from cabbage was not Newtonian flow of water through cell wall. In fact, the squeezed water contained a lot of solid particles, about 3% of solid cabbage particles, showing destruction of cell wall. It appeared that compression and dewatering of vegetable wastes in the low pressure. under 20 MPa, is more desirable for later treatment of the dewater. More researches are needed in order to develop a treatment method for the solid particles in the expressed water before an expeller treatment system can be applied to vegetable wastes.

  • PDF

Characteristics of Fluid Flow in a Solid Particle Circulating Fluidized Heat Exchanger (고체입자 순환유동층 열교환기의 유동특성)

  • Lee, B.C.;Ahn, S.W.;Kim, W.C.;Lee, Y.P.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.705-710
    • /
    • 2001
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than in the external flow, in addition, they were lower with the shapes of particles being closer to the spherical geometries.

  • PDF

Critical Suspension Condition of Particles in a Shaking Vessel of Solid-Liquid System (고-액계 진동교반에서 입자의 부유화 한계조건)

  • Lee, Young-Sei;Kim, Moon-Gab;Kato, Yoshihito
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.73-81
    • /
    • 1999
  • Shake mixing has been widely used in cell culture. The mixing performance for shake mixing, however, has not been reported quantitatively. The critical circulating frequency and the power consumption for complete suspension of particles, based on the definition of Zwietering, were measured in a shaking vessel containing a solid-liquid system. The critical suspension frequency was correlated by the equation from Baldi's particle suspension model modified with the physical properties of the particles. Critical suspension frequency was correlated as following ; $$N_{JS}={\frac{0.58\;d{_p}^{0.06}(g{\Delta}{\rho}/{\rho}_L)^{0.004}X^{0.03}}{D^{0.35}d^{0.17}{\upsilon}^{0.04}}}$$ The power consumption at the critical suspension condition in the shaking vessel was less than that in an agitated vessel with impeller.

  • PDF

On-Line Measurement of Solid Particles in Air Using a Quartz Crystal Microbalance (수정진동자 미량저울을 이용한 공기 중 먼지의 온라인 측정)

  • Choi, Kwang-Jae;Kim, Young-Han;Chang, Sang-Mok
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.314-319
    • /
    • 1999
  • The measurement of solid particles suspended in air is conducted with a quartz crystal microbalance. The measurement system is connected to a personal computer and multiple sensors are utilized to make simultaneous measurement possible. In this paper, the detail of experimental setup is extensively explained for the possible future application of the system in other areas. It is found that the measurement system is suitable for an on-line continuous determination of the concentration of solid particles in air.

  • PDF

Measurement of Heat Transfer Rates and Pressure Drops in a Solid Particle Circulating Fluidized Heat Exchanger (고체입자 순환유동층 열교환기의 열전달률 및 압력강하 측정)

  • 이금배;전용두;박상일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.817-824
    • /
    • 2000
  • The fluidized solid particles not only increase heat transfer rates but have a cleaning function eliminating contaiminated substances caused from condensate water. An experiment was performed to measure heat transfer rates and pressure drops in a fluidized heat exchanger with circulating solid particle for constant heat transfer rate. As a results, the heat transfer rate increased by 26.9~2.6%, heat transfer coefficient by 11.9~2.7%, and pressure drop by 79.1~10.9% at the gas velocity of 6.1 ~12.1 m/s and solid particle flow rate of 100~50 kg/h with the heat exchanger of H: 50 mm, $D_p=2 in,\; and\;D_{BP}$=30 mm.

  • PDF

Chemical Looping Combustion Characteristics of Coal and Char in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 석탄과 촤의 매체순환연소 특성)

  • Ryu, Ho-Jung;Hyun, Ju-Soo;Kim, Young-Joo;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.884-894
    • /
    • 2011
  • Effects of temperature, volatile content, particle diameter and solid input weight were investigated in the batch fluidized bed reactor using OCN703-1100 particle as oxygen carrier and Roto coal and char as fuels. Two solid fuels represented the best reactivity at different temperature, $900^{\circ}C$ for Roto coal and $950^{\circ}C$ for char, respectively. However, we selected $900^{\circ}C$ as the best operating temperature because the improvement of reactivity of char at $950^{\circ}C$ was negligible. Char represented better reactivity than Roto coal because char contains low volatile than Roto coal. For both solid fuels, reactivities were improved with increasing of the particle diameter. These results were explained by solid mixing tests in a transparent fluidized bed using two char particles having different particle size ranges and OCN703-1100 particle. The bigger particle showed better solid mixing with OCN703-1100 particle, and therefore, represented better reactivity. For both solid fuels, reactivities were improved with increasing of the solid input weight within the experimental conditions of this study because the weight of coarse particles increased with the solid input weight increased, and therefore, these coarse particles can mix well with the oxygen carrier.

Quantitative Analysis on the Damage of the Austenitic Stainless Steel under the Simultaneous Cavitation Bubble and Solid Particle Collapses (오스테나이트계 304 스테인리스강의 케비테이션 기포 및 고체 입자 동시 충격 손상의 정량적 고찰)

  • Hong, Sung-Mo;Park, Jin-Ju;Lee, Min-Ku;Rhee, Chang-Kyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.893-900
    • /
    • 2010
  • In the present work, the impact loads and their effects on the surface damage under the simultaneous cavitation bubble and solid particle collapses in the sea water have been quantitatively investigated for the austenitic 304 stainless steel by using a vibratory cavitation test device. To do this, angular $SiO_2$ solid particles with an average size of $150{\mu}m$ were dispersed into the test liquid, and the measured impact amplitudes were converted into the impact loads by a steel ball drop test. The maximum impact load was determined to be 28.2 N in the absence of solid particles, but increased to 33.7 N in the presence of solid particles. In addition, the critical impact loads, $L_{crit}$, required to generate pits with sizes greater than $3{\mu}m$ were measured to be 19.6 N and 16.6 N, respectively, for the cavitation bubble collapse and solid particle collapse. As a result of the cavitation erosion test, the incubation time and erosion rate were 1.2 times lower and 1.5 times higher, respectively, by a solid particle collapse compared to those only by the cavitation bubble collapse, indicating a drastic decrease in a resistance to cavitation erosion by the solid particle collapse.

A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion (고체입자 충돌침식으로 인한 배관 재질의 손상에 관한 연구)

  • Kim, Kyung-Hoon;Choi, Duk-Hyun;Kim, Hyung-Joon
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.130-138
    • /
    • 2014
  • Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor-based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

Synthesis of Mn-doped Zn2SiO4 phosphor particles by solid-state method at relatively low temperature and their photoluminescence characteristics (상대적으로 낮은 온도에서의 고상법에 의한 망간이 도핑된 Zn2SiO4 형광체 입자의 제조 및 형광특성)

  • Lee, Jin-Hwa;Choi, Seung-Ok;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.228-233
    • /
    • 2010
  • Mn-doped $Zn_2SiO_4$ phosphor particles having submicrometer sizes were synthesized by a solid-state reaction method using methyl hydrogen polysiloxane-treated ZnO, fumed $SiO_2$ and various Mn sources. The crystallization and photoluminescent properties of the phosphor particles were investigated by X-ray diffraction(XRD), scanning electron microscope(SEM), and by their photoluminescence(PL) spectra. Due to the effect of the dispersion and coherence of the methyl hydrogen polysiloxane-treated ZnO, the Mn-doped $Zn_2SiO_4$ particles were successfully obtained by a solid state method at $1000^{\circ}C$, and the maximum PL intensity of the prepared particles under vacuum ultra violet(VUV) excitation occurred at a Mn concentration of 0.02mol and a sintering temperature of $1000^{\circ}C$.

Experimental Study of Volatility of Diesel Exhaust Particles (경유자동차 입자상물질의 휘발성에 대한 실험적 연구)

  • Gwon Sun-Park;Lee Gyu-Won;Saito K.;Shinozaki O.;Seto T.
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.229-230
    • /
    • 2002
  • Diesel exhaust particles are mostly sub-micrometer agglomerates composed of carbonaceous primary particles ranging from 10 to 80nm, but contain also adsorbed or condensed hydrocarbons, hydrocarbon derivatives, sulfur compounds, and other materials. If particles are primarily composed of volatile materials, they have different health impacts from solid particles. Thus, the analysis of the volatility of diesel particles is one of an important diesel research area. (omitted)

  • PDF