• 제목/요약/키워드: Solid loading rate

검색결과 90건 처리시간 0.029초

유기성고형폐기물의 연속 중온 건식혐기성소화 (Continuous Mesophilic-Dry Anaerobic Digestion of Organic Solid Waste)

  • 오세은;이모권;김동훈
    • 대한환경공학회지
    • /
    • 제31권5호
    • /
    • pp.341-345
    • /
    • 2009
  • 음식물쓰레기와 종이류로 구성된 유기성고형폐기물(고형물 함량 30% TS)을 대상으로 중온 건식혐기성소화를 시도하였고, 연속 운전 중 수리학적 체류 시간(HRT)을 150일, 100일, 60일, 40일로 감소시켰다. 기질의 고형물 농도를 30% TS (Total Solids)로 고정하였기 때문에 각각의 HRT에 해당하는 고형물 부하는 2.0, 3.0, 5.0, 7.5 kg TS/$m^3$/d였다. HRT를 줄임에 따라 단위용적 당 바이오가스 생산 속도는 증가하였고, HRT 40일에서 3.49${\pm}$0.31 $m^3/m^3/d$로 가장 높은 성능을 보였다. 이 때, 76%의 휘발성 고형물(VS) 분해율이 유지되었고, 0.25 $m^3$/kg $TS_{added}$의 메탄 생산 전환율을 보였으며, 이는 기질의 67.4%에 해당하는 에너지가 메탄 가스로 전환된 것을 의미한다. HRT 100일에서 0.52 $m^3$/kg $TS_{added}$로 가장 높은 바이오가스 전환율을 보였지만, 모든 HRT에서 0.45${\sim}$0.52 $m^3$/kg $TS_{added}$로 큰 차이가 나지 않았다. 고형물 함량이 높은 기질의 원활한 주입을 위해 소화조 발효액의 일부를 기질 투입구로 반송하여 기질과 혼합 후 주입하였다. 주입하고자 하는 기질의 5배에 해당하는 양의 소화조 발효액을 반송하여 혼합하였을 때, 가장 효과적인 기질 주입이 이루어졌다. 중온 건식 조건에서 서식하는 메탄 소화균의 활성도를 측정한 결과, 아세트산, 뷰틸산, 프로피온산을 이용할 경우 각각 2.66, 1.94, 1.20 mL $CH_4/g$ VS/d였다.

유로변경식 부상여재 생물여과시스템을 이용한 하수고도처리 (Advanced Wastewater Treatment Using Biofilter System with Floating Media under Alternative Flow)

  • 류홍덕;이정훈;이상일
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.250-257
    • /
    • 2006
  • The objective of this study is to propose an alternative process for the small sewage treatment plants in rural communities. A biofilter has been used for biological wastewater treatment, which is becoming the alternative to the conventional activated sludge system. The proposed process used in this study, which is packed with floating media (i.e. expanded polystylene), has advantages of biofilter system and alternative flow system and they are incorporated into one process. Pilot and bench scale studies were performed using domestic wastewater. In the results of pilot plant study, it was observed that the stable effluent water quality was achieved and it met the present effluent criteria of suspended solid (SS), organic matters, T-N and T-P. In the study for determination of the cycle of backwashing, it was observed that the cycle of backwashing depended on BOD loading rates of influents. In the BOD loading rates of $0.5kg\;BOD/m^3{\cdot}day$ and $1.0kg\;BOD/m^3{\cdot}day$, the backwashing cycle of 28 hour and 16 hour were needed, respectively. The optimum backwashing time was 120~80 seconds at the media expansion rate of 50%. In the removal of SS, organic matters, T-N and T-P, SS removal was rather achieved by physical filtration than biological mechanism and the removal of organic matters except for SS, T-N and T-P were mainly rather achieved by biological mechanism than physical filtration. In bench-scale study, the effects of recirculation rate was investigated on removal of SS, TCOD, T-N and T-P. It was observed that the recirculation made removal efficiencies of SS, TCOD, T-N and T-P increased. Especially, in T-N removal, the increase of T-N removal efficiency of 40% was observed in the reicirculation rate of 1Q compared with 0Q.

The Chemical Nature of Individual Size-resolved Raindrops and Their Residual Particles Collected during High Atmospheric Loading for PM2.5

  • Ma, Chang-Jin;Sera, Koichiro
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권3호
    • /
    • pp.176-183
    • /
    • 2017
  • Although it is well known that rain plays an important role in capturing air pollutants, its quantitative evaluation has not been done enough. In this study, the effect of raindrop size on pollutant scavenging was investigated by clarifying the chemical nature of individual size-resolved raindrops and their residual particles. Raindrops as a function of their size were collected using the raindrop collector devised by our oneself in previous study (Ma et al., 2000) during high atmospheric loading for $PM_{2.5}$. Elemental analyses of solid residues and individual residual particles in raindrops were subsequently analyzed by Particle Induced X-ray Emission (PIXE) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX), respectively. The raindrop number concentration ($m^{-2}h^{-1}$) tended to drastically decrease as the drop size goes up. Particle scavenging rate, $R_{sca.}$ (%), based on the actual measurement values were 38.7, 69.5, and 80.8% for the particles with 0.3-0.5, 0.5-1.0, and $1.0-2.0{\mu}m$ diameter, respectively. S, Ca, Si, and Al ranked relatively high concentration in raindrops, especially small ones. Most of the element showed a continuous decrease in concentration with increasing raindrop diameter. The source profile by factor analysis for the components of residual particles indicated that the rainfall plays a valuable role in scavenging natural as well as artificial particles from the dirty atmosphere.

고온 협기성 연속회분식 공정에 의한 도시하수슬러지 소화 (Thermophilic Sewage Sludge Digestion by Anaerobic Sequencing Batch Reactor)

  • 허준무;박종안;이종화;손부순;장봉기
    • 환경위생공학
    • /
    • 제14권3호
    • /
    • pp.130-138
    • /
    • 1999
  • The feasibility of municipal sewage sludge digestion was investigated by using thermophilic anaerobic sequencing batch reactor(ASBR). One-day settle time was enough for the high performance of solid-liquid separation. The conversion of semi-continuous mode to sequencing batch mode is easily achieved without any adverse effects, although the large amount of sludge equal to the volume ratio of 0.3~06 to reactor volume was added in the feed step of the start-up. The ASBRs had higher conversion capability of organics to biogas than the control reactor. Gas yields of the ASBRs were increased by the average of 50% over the control reactor across a range of hydraulic retention time(HRT)s from 10days to 5days. The thermophilic reactors showed higher gas production than mesophilic reactor. Removal efficiencies of organic matter exceeded 80% on the basis of supernatants, except that at the reactor. Solid-liquid separation was essential in the performance of the ASBR, especially, at the lower HFT. The ASBRs were highly efficient in the retention of activated biomass within the reactor. thus compensating for increased equivalent organic loading rate through increased solids retention times followed by the increased solids, while maintaining shorter HRTs.

  • PDF

열분해 특성상수를 활용한 탄소/페놀릭 복합재료의 온도분포 해석 (The Analysis of the temperature distribution in Carbon/Phenolic composite by thermal decomposition parameters)

  • 김연철;박영채
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.45-49
    • /
    • 2006
  • 탄소/페놀릭 복합재료가 높은 온도에서 열분해 되는 현상을 연구하기 위하여 열중량분석기(TGA)가 이용되었다. 높은 온도와 다양한 하중조건에서 운용되는 고체 추진기관의 열방호 시스템으로 적합한 재료를 분석하고 개발하는데 연구목적이 있다. 실제 연소조건과 유사한 온도 상승속도를 고려하기 위하여 열분해 특성상수 값은 1000 K/min인 경우로 예측된 값을 FEM 해석코드 자료로 활용하였다. 온도 분포는 실험 결과 값과 같은 거동을 보였으며 열분해 깊이는 ${\pm}1mm$ 이내에서 해석 결과와 잘 일치 하였다.

  • PDF

녹색기업의 사업활동 전 과정에 대한 환경성 평가 -1. 공정 흐름 및 원단위 분석 (Life Cycle Assessment for the Business Activities of Green Company -1. Analysis of Process Flow and Basic Unit)

  • 신춘환;박도현
    • 한국환경과학회지
    • /
    • 제22권3호
    • /
    • pp.269-279
    • /
    • 2013
  • In this paper, an environmental assessment was carried out on the whole process of industrial business activities to establish a basic plan for climate change mitigation and energy independency. The whole process was divided into each discharge process in terms of water, air, solid waste, green house gases and refractory organic compounds. The flowcharts and basic unit of process were analysed for three years (2008-2010), being utilized as basic information for the life cycle assessment. It was found that the unit loading for the whole process significantly depends on changes in the operation rate change and highly concentrated wastewater inflow. About 35% of solid waste production was reduced by improving the incineration method with co-combustion in coal boiler, generating about 57% of electricity used for the whole process, and consequently reducing the energy costs. As the eco-efficiency index was found to be more than 1, compared to the previous years, it can be said that improvement in general has taken place.

상향류식 혐기성 입상슬러지 공법의 유기폐수 처리 효율에 미치는 온도의 영향 (Temperature Effect of the UASB Process for Treatment of Organic Waste)

  • 박철휘;정태학
    • 상하수도학회지
    • /
    • 제10권4호
    • /
    • pp.45-54
    • /
    • 1996
  • Effects of temperature on the efficiency of the Upflow Anaerobic Sludge Blanket(UASB) process for treatment of wastewater from a starch and related products manufacturing industry were investigated using laboratory scale reactors equipped with two types of Gas-Solid Separator(GSS). Both fresh digested sludge and granular sludge stored nearly for one year at room temperature were good as a seeding material. The reactors seeded with aged granular sludge showed slow start-up, however, lowered activity at the initial period was recovered gradually. The GSS with an inner cylinder was proved to be effective in liquid-solid separation compared to the conventional type. Although the rate of organic removal and gas production per unit volatile suspended solids in the reactor reduced significantly as the temperature varied from 35 to $20^{\circ}C$, possibility of operation at low temperatures was shown as a result of gradual buildup of volatile suspended solids in the bed. Stable operation with a reduced efficiency was possible at a COD loading of $5-8kg/m^3/day$ at a temperature as low as $20^{\circ}C$.

  • PDF

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • 한국환경과학회지
    • /
    • 제19권11호
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.

Wrinkling of a homogeneous thin solid film deposited on a functionally graded substrate

  • Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.215-225
    • /
    • 2020
  • Thin films easily wrinkle under compressive loading due to their small bending stiffness resulting from their tiny thickness. For a thin film deposited on a functionally graded substrate with non-uniform stiffness exponentially changes along the length span in this paper, the uniaxial wrinkling problem is solved analytically in terms of hyper-Bessel functions. For infinite, semi-infinite and finite length systems the wrinkling load and wrinkling wavenumber are determined and compared with those in literature. In comparison with a homogeneous substrate-bounded film in which the wrinkling pattern is uniform along the length span, for a functionally graded substrate-film system the wrinkles accumulate around the softer location of the functionally graded substrate. Therefore, the effective length of the film influenced by the wrinkles decreases, the amplitude of the wrinkles on softer regions of the functionally graded substrate grows and the wrinkling load of the functionally graded substrates with higher softening rate decreases more. The results of the current research are expected to be useful in science and technology of thin films and wrinkling of the structures especially living tissues.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF