• Title/Summary/Keyword: Solid digestion

Search Result 141, Processing Time 0.02 seconds

Night Soil Treatment by Anaerobic Sequencing Batch Reactor (혐기성 연속 회분식 반응조에 의한 분뇨처리)

  • 허준무;박종안
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2000
  • 운전 온도 $35^{\circ}C$, 평균 유기물부하 $3.1{\;}kgCOD/m^3/day$ 및 수리학적체류시간 10일에서 혐기성 연속회분식공정에 의한 분뇨처리를 수행하였다. 공정의 평가는 대조 소화조로 완전혼합형의 소화조와 병행하여 수행되었다. 본 실험에서 분뇨는 고농도의 암모니아성 질소와 침전성 고형물을 함유하고 있음에도 불구하고 희석 없이 소화가 가능하였다. 혐기성 연속회분식공정에서 고형물은 급속하게 증가하여 완전혼합형의 대조 소화조에 비하여 소화조내 고형물(biomass)의 농도가 2.4배로 증가하였고, 가스발생량에 있어서도 대조 소화조에 비해 현격한 증가를 보였으며 그 증가율은 205~220%에 달했다. 부가적인 침전 시설이 없이도 혐기성 연속회분식공정의 유출수질이 대조 소화조 보다 높게 나타났는데 상징액 기준으로 휘발성고형물 제거율은 혐기성 연속회분식공정이 대조 소화조 보다 12~14% 높았다. 한편, 혐기성 연속회분식공정의 운전인자로 반응/침강비(R/T ratio)를 조사한 결과 R/T비가 1인 경우가 3의 경우보다 가스발생량, 메탄함량 및 유기물 제거율이 약간 높았으나 큰 차이는 없었다. 위의 실험결과들로부터 혐기성 연속회분식공정은 고농도의 암모니아성 질소와 침전성 유기물을 함유하고 있는 분뇨의 처리에 효과적이고 안정적인 공정으로 판단된다.

  • PDF

Decrease of the Hydrogen Sulfide($H_2S$) in the Produced Biogas by the Anaerobic Digestion (혐기성소화 시 발생되는 $H_2S$ 감소에 관한 연구)

  • Hong, Jong-Soon;Kim, Jae-Woo
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.80-89
    • /
    • 2009
  • In the organic waste, food waste is the most difficult controls. In the study, food waste was treatmented to removal only the dockage. To decrease the hydrogen sulfide($H_2S$) in the produced biogas, iron chloride put in the anaerobic digester. Respectively treatment quantity of the food waste, content of the methane($CH_4S$) gas in the biogas, produced gases quantity, put in the quantity of the Iron chloride, pH, TS, Alkalinity, VFA, Ammonia. The results obtained from the experiment are as follows: 1. The produced biogases quantity/the treatment quantity of the food waste was $83.82{\sim}129.41m^3/ton$. 2. The content of the hydrogen sulfide($H_2S$) in the produced biogas is below of the 500ppm. The iron chloride put in the anaerobic digester. 200~300kg of the iron chloride put in the anaerobic digester at the steady-state. 400~850kg of the iron chloride put in the anaerobic digester at the unsteady-state. 3. Factor of the operator was the pH: 7.7~8.4, content of mathane: 55~65%. 4. TS(total solid) of the digestor sludge was 17~20%, Alkalinity was 38,500~41,750ppm, VFA(Volatile Fatty Acids) was 2,800~2,420ppm, Ammonia was 4,300~3,650ppm.

Determination of Methylmercury in Biological Samples Using Dithizone Extraction Method Followed by Purge & Trap GC-MS

  • Lee, Jung-Sub;Ryu, Yoon-Jung;Park, Jae-Sung;Jeon, Sung-Hwan;Kim, Sam-Cwan;Kim, Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2293-2298
    • /
    • 2007
  • In this study, a dithizone extraction technique involving purge & trap GC-MS was developed for the determination of methylmercury in biological samples, especially blood and fish. After alkaline digestion, methylmercury in biological samples was extracted into dithizone and back-extracted into aqueous sulfide solution. The extracted methylmercury was converted to the volatile ethyl derivative, purged and trapped onto a solid-phase collection medium, and then introduced into the GC-MS system. The determined MDLs of the established method were 0.9 ng·g?1 for biological samples and its accuracy and precision were found to be 93% and 3.8%, respectively. The method was validated by analysis of CRMs such as SRM 966, BCR 463 and IAEA 407 and all analytical results were within certified ranges with average RSDs of less than 6%. The analytical results of field-sampled fish also showed that the method can be successfully used as an alternative for commonly used distillation method followed by GC-CVAFS detection.

Ruminal Degradation of Sugarcane Stalk

  • Kawashima, T.;Sumamal, W.;Pholsen, P.;Chaithiang, R.;Hayashi, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1280-1284
    • /
    • 2003
  • The number of protozoa and VFA content in the rumen fluid, in situ disappearance and turnover rate were examined with four rumen-fistulated cattle given either sugarcane stalk or Ruzi grass hay in order to clarify the manner of rumen digestion of sugarcane stalk. Cattle were given either sugarcane stalk or Ruzi grass hay at 1.0% of body weight level with commercial concentrate feed. Feeding sugarcane stalk reduced acetate content and increased propionate and butyrate contents in rumen fluid. While rapidlysoluble fraction of sugarcane stalk was 42%, the insoluble but potentially degradable fraction was only 17%. This clearly showed that sugarcane stalk mainly consisted of water soluble fraction (i.e. sugar) and tough fiber (i.e. bagasse). The ruminal degradation rate of both Ruzi grass hay and sugarcane stalk was lower in the animal given sugarcane stalk in comparison with those given Ruzi grass hay. While the turnover rate of liquid phase was about 50% higher in the animals given sugarcane stalk than in the animals given Ruzi grass hay, that of the solid phase was about 40% lower in the animals given sugarcane stalk. The effective degradability of DM of sugarcane stalk was higher than that of Ruzi grass hay. Sugarcane would be a promising roughage for ruminants in the tropics especially, in the dry season.

EFFECT OF ALKALINE HYDROGEN PEROXIDE TREATMENT OF RICE STRAW ON IN SACCO RUMINAL DIGESTIBILITY

  • Myung, K.H.;Kennelly, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • The objective of this experiment was to compare the effect of pH-regulated alkaline hydrogen peroxide (AHP) treatment of rice straw with those of sodium hydroxide (NaOH) and anhydrous ammonia ($NH_3$) treatments on in sacco digestivility. Three non-lactating ruminally cannulated Holstein cows were fed a diet containing 90% forage and 10% concentrate on a dry matter (DM) basis. The AHP treatment significantly (p<0.05) reduced acid detergent lignin content of the straw, resulting in significant (p<0.05) increase of neutral detergent fiber (NDF), acid detergent fiber (ADF) and cellulose concentrations. Disappearance rates of DM and NDF of the straw significantly (p<0.05) increased at the incubation time of 24 h. On the other hand, those of ADF and cellulose were significantly (p<0.05) higher at the incubation time of 12 h than those of the others. The effective degradability of DM(EDDM), NDF(EDNDF), ADF(EDADF) and cellulose (EDCE) were determined using in sacco nylon bag technique on the basis of 0.05/h solid outflow rate. The greater differences (p<0.05) of EDDM, EDNDF, EDADF and EDCE were found between AHP treated straw and the others. In general, AHP treatment of the straw recorded higher digestion coefficients than untreated straw as well as NaOH and $NH_3$ treated straws. The results of this study demonstrate that AHP treatment can be used as a effective method for improving the nutritive value of rice straw for ruminants.

Chemical Analysis of Fly Ashes from Municipal Solid Waste Incinerators (생활폐기물 처리시설 배출 비산재의 조성분석)

  • Jang, Seong-Ki;Choi, Duk-Il;Lim, Chang-Ho;Lee, Jin-Sook
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.215-221
    • /
    • 2000
  • Analysis of fly ashes from the MSW incinerators was carried out using XRF, ICP-MS and ICP-AES. It was found that the major elements of fly ash were Ca, K, Na, Si, Al, S, Cl and O by the XRF analysis. The XRD spectra showed that the fly ashes were mainly consisted with the chlorides, hydroxides, carbonates and also oxides of former elements. For the determination of minor elements such as Zn, Pb, Cu, Cr, and Cd, we used ICP-AES and ICP-MS after microwave digestion and the results were compared with the result of XRF.

  • PDF

The Commercial Value of Goat Milk in Food Industry (산양유의 산업적 이용 가치에 대한 연구 고찰)

  • Jung, Tae-Hwan;Hwang, Hyo-Jeong;Yun, Sung-Seob;Lee, Won-Jae;Kim, Jin-Wook;Shin, Kyung-Ok;Han, Kyoung-Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.173-180
    • /
    • 2016
  • In many countries, goat milk is an excellent nutrient source and is less allergenic for children and the elderly. The casein composition of goat milk consists largely of ${\beta}$-casein and lower amounts of ${\alpha}_{s1}$-casein, which may interfere with digestion by forming solid curds in the human stomach. Goat milk contains small fat globules and large amounts of medium chain fatty acids for, better digestibility, as well as abundant minerals and vitamins with high absorption rates. Recently, the medical benefits of goat milk in different human disorders have been recognized, leading to an increased interest in developing functional foods with goat milk, particularly for individuals with malabsorption syndrome. However, the physiological and biochemical properties of goat milk are largely unknown. We review the importance of goat milk as a potential functional food by providing scientific evidence confirming its health benefits.

A Study on Developement of Effective Utilization Method of Skipjack Tuna Viscera (가다랑어 내장의 효율적인 이용방법 개발에 관한 연구)

  • Lee, Soon-Chun;Woo, Kang-Lyung
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 1992
  • To develop an effective utilization method of skipjack tuna viscera, fish meal by an improved fermentation method(FFMA) was prepared by fermentation of the solid materials separated from autoclaved viscera with Aspergillus oryzae for 72 hours and by adding the concentrated soluble extracts separated from autoclaved viscera to the fermenting solid materials during fermentation, and FFMA fish meal was compared with the fish meals prepared by Kato mathod(FFMN) and conventional nonfermenting method(NFM). FFMN fish meal was prepared by fermenting the solid materials separated from autoclaved viscera with Aspergillus oryzae for 17 hours without adding the soluble extract. The extracts from FFMA fish meal(FFMA-E) and raw viscera(RM-E) were also prepared respectively after digestion with proteases obtained from Bacillus subtilis and Aspergillus oryzae and compared with each other on the contents of free amino acids. The peroxide values decreased greatly in contents of $Vitamin\;B_{1},\;B_{2}\;and\;C$ significantly increased in FFMA fish meal compared with those of other fish meals. The total free amino acid content of FFMA-E was significantly higher then that of RM-E. The total free essential amino acid content also greatly increased in FFMA-E in which threonine, methionine and lysine showed remarkable increments. Almost all individual nonessential amino acids were higher in FFMA-E then in RM-E. The content of taurine, a nonprotein amino acid, greatly increased compared with other nonprotein amino acids in both extracts.

  • PDF

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

Analysis of the Factors Affecting Anaerobic Thermophilic Digestibility of Food Wastes (음식물쓰레기의 고온 혐기성 소화도에 미치는 요소에 대한 분석)

  • Kim, Do Hee;Hyun, Seung Hoon;Kim, Kyung Woong;Cho, Jaeweon;Kim, In S.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.130-139
    • /
    • 2000
  • Serial basic tests were conducted for the determination of fundamental kinetics and for the actual application of kinetic parameter to food waste digestion with precise measurement of methane production under a thermophilic condition. The effects of food particle size, sodium ion concentration, and volatile solid (VS) loading rate on the anaerobic thermophilic food waste digestion process were investigated. Results of serial test for the determination of fundamental kinetic coefficients showed the value of k (maximum substrate utilization rate coefficient) and KS (half-saturation coefficient) as $0.24hr^{-1}$ and $700mg/{\ell}$, respectively, for non-inhibiting organic loading range. No inhibition effect was shown until $5g/{\ell}$ of sodium ion concentration was applied to a serum bottle reactor. However, the volume of methane gas was decreased gradually when the concentrations of more than $5g/{\ell}$ of sodium ion applied. All sizes of food waste particle showed the same constants (A : 0.45) but the maximum substrate utilization rate constant ($k_{HA}$) was inversely proportional to particle size. As an average particle size increased from 1.02 mm to 2.14 mm, $k_{HA}$ decreased from $0.0033hr^{-1}$ to $0.0015hr^{-1}$. The result reveals that particle size is one of the most important factors in anaerobic food waste digestion. There was no inhibition effect of sodium ion when VS loading rate was $30g/{\ell}$. And maximum injection concentration of VS loading rate was determined about $40g/{\ell}$.

  • PDF