• Title/Summary/Keyword: Solid bed modeling

Search Result 24, Processing Time 0.023 seconds

Industrial Solids Processing Applications - Particle Reaction Models and Bed Reactor Models (산업용 고체 처리 공정 - 입자 반응 및 고정층 반응기 모델링)

  • Ahn, Hyungjun;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.27-35
    • /
    • 2017
  • This paper reviews the previous industrial solid bed process simulations to provide a better understanding of the modeling approaches to the particle reactions in the bed. Previous modeling studies on waste incinerator, iron ore sintering bed, blast furnace, iron ore pellet indurator, and biomass combustor can be seen on the common ground of unsteady 1-D modeling scheme. Approaches to the particle reaction modeling have been discussed in terms of the status of solid particles in the bed, types of reaction progression in a particle, and the consideration of the intra-particle temperature gradient.

Modeling Approach of Solid Particle Bed for the Combustion Environment Control (고체 입자 베드 내 반응 환경 변화를 위한 모델링 접근 방법)

  • Ahn, Hyungjun;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.21-23
    • /
    • 2013
  • Various solid particle materials are treated in the industrial processes including fixed-beds or moving grate beds, and modeling approaches have been widely applied to the processes to predict and evaluate their performance. For this study, the modeling approach was applied to iron ore sintering process with various improvement measures. Based on the previous modeling approach, the changes and effects of the improvement measures were discussed at the point of controlling the combustion environment in the bed.

  • PDF

Modeling of Combustion and Heat transfer in the Iron Ore Sintering Bed;Evaluation of the Calculation Results for Various Cases (제철 소결기 배드 내 연소 및 열전달 모델링;인자 변화에 의한 계산 결과 평가)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.171-178
    • /
    • 2002
  • Numerical simulations of the condition in the iron ore sintering bed are performed for various parameters. The sintering bed is modelled as an unsteady one-dimensional progress of solid material, containing cokes and iron ore. Bed temperature, solid mass and gas species distributions are predicted for various parameters of moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results show that influences of these parameters on the bed condition should be carefully evaluated for achievement of the self-sustaining combustion without the high temperature section, which can cause the excessive melting in the bed. It suggests that the model should be extended to consider the bed structural change and multiple solid phase, which can treat the inerts and fuel particles separately.

  • PDF

Combustion Modeling of a Solid Fuel Bed with Consideration of the Multiple Solid Phases (다중 고체상을 고려한 고체 연료층 연소 모델링)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.119-127
    • /
    • 2003
  • In this study we propose an unsteady I-dimensional model of bed combustion with multiple solid phases, which confers a phase on each solid material. This model can be applied to a variety of bed combustion cases of various configurations and ignition methods. It contains fuel combustion, gaseous reaction, heat transfers between each phase, and geometric changes of the solid particles. An iron ore sintering pot is selected for verifying the model validity and simulation results are compared with the limited experimental data set of various coke contents and air supply rates. They predict the experimental results well and show applicabilities to the various system of the fuel bed with various solid materials.

  • PDF

Modeling of Combustion and Heat Transfer in the Iron Ore Sintering Bed (제철 소결기 베드 내 연소 및 열전달 모델링)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.23-31
    • /
    • 2002
  • Processes in an iron ore sintering bed can characterized as a relatively uniform progress of fuel, cokes combustion and complicated physical change of solid particles. The sintering bed was modelled as an unsteady one-dimensional progress of the fuel layer, containing two phases: solid and gas. Coke added to the raw mix, of which the amount is about 3.5% of the total weight, was assumed to form a single particle with other components. Numerical simulations of the condition in the iron ore sintering bed were performed for various parameters: moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results showed that the influence of these parameters on the bed condition should be carefully evaluated, in order to achieve self-sustaining combustion without high temperature section. The model should be extended to consider the bed structural change and multiple solid phase, which could treat the inerts and fuel particles separately.

  • PDF

Modeling of Coke Combustion and Heat Transfer in an Iron Ore Sintering Bed with Considerations of Multiple Solid Phases (다중 고체상을 고려한 소결기의 코크스 연소-열전달 모델링)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.79-84
    • /
    • 2003
  • In this study we propose an unsteady I-dimensional model of an iron ore sintering bed with multiple solid phases, which confers a phase on each solid material. This model contains coke combustion, limestone decomposition, gaseous reaction, heat transfers between each phase, and geometric changes of the solid particles. Simulation results are compared with the limited experimental data set of various coke contents and air supply rates. Effect of the coke diameter is also evaluated. They predict the experimental results well and show applicabilities to the various system of the fuel bed with various solid materials.

  • PDF

Application of Intra-particle Combustion Model for Iron Ore Sintering Bed (제철 소결공정에 대한 단입자 연소 모델의 응용)

  • Yang, Won;Choi, Sang-Min;Jin, Hong-Jong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.181-188
    • /
    • 2006
  • Operation parameters for large scale industrial facility such as iron making plant are carefully selected through elaborate tests and monitoring rather than through a mathematical modeling. One of the recent progresses for better energy utilization in iron ore sintering process is the distribution pattern of fuel inside a macro particle which is formed with fines of iron ore, coke and limestone. Results of model tests which have been used as a basis for the improved operation in the field are introduced and a theoretical modeling study is presented to supplement the experiment-based approach with fundamental arguments of physical modeling, which enables predictive computation beyond the limited region of tests and adjustment. A single fuel particle model along with one-dimensional bed combustion model of solid particles are utilized, and thermal processes of combustion and heat transfer are found to be dominant consideration in the discussions of productivity and energy utilization in the sintering process.

  • PDF

Prediction of Combustion and Heat Transfer in the Sintering Bed of Iron Ore (제철 소결공정의 철광석-코크스 베드에서의 연소와 열전달 해석)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.161-168
    • /
    • 2001
  • Sintering bed of iron ore in the steel making process is one of typical applications of solid fuel bed, which has relatively uniform progress of fuel and simple processes of combustion. The sintering bed was modelled as an unsteady one-dimensional progress of fuel layer containing the two phases of solid and gas. Cokes added to the raw mix of which the amount is about 3.5% of the total weight was assumed to form a single particle with other components. In the early predition results presented in this paper, the flame propagation within the bed was not sustained after the top surface of the bed was ignited with hot gas. It suggests that the model should be extended to consider the multiple solid phase, which can treat the ore particles and the coke particles separately.

  • PDF

A Quantitative Evaluation of Combustion Characteristics of Coke/Anthracite in an Iron Ore Sintering Bed (소결층 내 코크스/무연탄 연소 특성의 정량적 평가)

  • Yang, Won;Yang, Gwang-Hyeok;Choi, Sang-Min;Choe, Eung-Su;Lee, Deok-Won;Kim, Seong-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.33-40
    • /
    • 2004
  • Combustion of coke/anthracite in an iron ore sintering bed is characterized quantitatively by introducing newly defined parameters related to propagation and thickness of combustion zone and maximum temperature. The parameters are obtained by sintering pot experiment and I-D, unsteady numerical model which treats solid material as multiple solid phases. Experiments and calculations are performed for various major operating parameters: air inlet velocity, different type of fuels which have different reactivity and diameter of the solid fuel. Effects of the operating parameters on the productivity and quality of the sintering process are investigated and evaluated quantitatively and the results show that optimized air supply rate and diameter of anthracite for replacement of coke can be obtained. This approach can be applied to other kinds of combustors for characterization of the combustion in the solid fuel beds.

  • PDF