• Title/Summary/Keyword: Solid Volume Fraction

Search Result 169, Processing Time 0.027 seconds

Mg합금의 반용융가압주조시 주조조건에 의한 금형충전성 및 유동성 변화 (A Study on Mold Filling and Fluidity of Mg Alloy in Thixocasting)

  • 정운재;김기태;홍준표
    • 한국주조공학회지
    • /
    • 제15권2호
    • /
    • pp.184-193
    • /
    • 1995
  • Effects of process parameters during thixocasting, such as solid volume fraction, mold temperature and extrusion ratio, on the mold filling behaviour and fluidity of Mg alloy(AZ91D) have been investigated. The semi-solid ingot held for 60 minutes at the semi-solid temperature range did not contain the equilibrium volume fraction of solid as expected from the phase diagram. Therefore, in order to obtain the desired solid fractions, and to suppress the exaggerated grain growth during heating, it was required to heat the ingot rapidly up to the temperature $10^{\circ}C$ higher than the semi-solid temperature suggested from the phase diagram for a specific volume fraction of solid. The experimental results show that mold filling behaviour and fluidity can be improved with the use of the higher mold temperature and the lower volume fraction of solid, but remain nearly unaffected by the change of extrusion ratio.

  • PDF

혼합이론에 근거한 반용융 재료의 고상률 분포 예측 (Prediction of Distribution of Solid Volume Fraction in Semi-Solid Materials Based on Mixture Theory)

  • 윤종훈;김낙수;임용택
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.399-406
    • /
    • 1999
  • It is more appropriate to treat that the semi-solid mixture as a single phase material that obeys incompressibility in the global sense and to analyze the liquid flow only locally than the approach based on compressible yield criteria. In the present study, a numerical algorithm of updating the solid volume fraction based on mixture theory has been developed. Finite element analysis of simple upsetting was carried out using the proposed algorithm to investigate the degree of macro-segregation according to friction conditions and compressive strain rates under the isothermal condition. The simulation results were compared to experimental results available in reference to test the validity of the currently proposed algorithm. Since the comparison results show a good agreement it is construed that the proposed algorithm can contribute to the development of numerical analysis of determining the solid volume fraction semi-solid processing.

  • PDF

Rheo-Compocasting에 의한 $SiC_p$/6063 Al합금의 복합조직 (Composite Structures of $SiC_p$/6063 Aluminum Alloy by Rheo-Compocasting.)

  • 최정철
    • 한국주조공학회지
    • /
    • 제10권4호
    • /
    • pp.309-315
    • /
    • 1990
  • Aluminum alloy matrix composites reinforced by SiC particles were prepared by rheocompocasting, a process which consists of the incoporation and distribution of reinforcement by stirring within a semi-solid alloy. When the volume fraction of SiCp and stirring speed were fixed, the dispersion of SiCp in Al-matrix alloy depended on stirring time and solid volume fraction in slurry. The results were as follows : 1) As a dispersed SiCp during stirring at $647^{\circ}C$ in 6063-Al alloy, SiC was better dispersed than that other temperature, where solid volume fraction was 43% in slurry. 2) When increased solid fraction in slurry, rate of dispersing SiC increased during stirring and porosities decreased in matrix alloy after casting. 3) Inspite of stirring with 800rpm, since solid particles of matrix alloy in slurry joined each other and occured joining growth, so that SiC was not dispersed into solid particle.

  • PDF

Al-6.2wt%Si합금의 리오캐스트 조직과 특성 (Microstructure and Characteristic of Rheocast Al-6.2wt%Si Alloy)

  • 이정일;박지호;이호인;김문일
    • 한국주조공학회지
    • /
    • 제14권5호
    • /
    • pp.438-446
    • /
    • 1994
  • The effect of various thermomechanical treatments on the structure and rheological behaviour of Al-6.2wt%Si alloy in its solidification range were investigated using a Searle type high temperature viscometer. During continuous cooling, the viscosity increases gradually with increasing fraction of solidified alloy, until a critical fraction of solidified alloy is reached above which the viscosity sharply increases. The viscosity of the slurry, at a given volume fraction wolid, decreased with increasing shear rate. The size and morphology of primary solid particles during stirring is influenced strongly by shear rates, cooling rates, volume fraction and stirring time of solid. Morphological changes during stirring as a function of solid volume fractions, shear rate and processing time were also reported. In this study, the size of primary solid particles in these alloys consistently increases and the it`s aspect ratio decrease with the increase in fraction solid and decrease in shear rate. Crystal morphology changes from rosette type to spheroid type with the increase in shear rate and solid fraction.

  • PDF

반응고 357-T5 합금의 파괴 특성 (Fracture behavior of Thixoformed 357-T5 Semi-solid Al alloys)

  • 박철;김상식;배명환;강신우;권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.65-69
    • /
    • 2003
  • The effects of microstructural features on the fracture behaviors, including impact, high-cycle fatigue, fatigue and crack propagation, of thixoformed 357-T5 (Al-7%Si-0.6%Mg) alloy were examined. The resistance to impact and high-cycle fatigueof thixoformed 357-T5 tended to improve greatly with increasing solid volume fraction. An almost three-fold increase in impact energy value was, for example, observed with increasing solid volume fraction from 59 to 70%. The improvement in both impact and fatigue properties of thixoformed 357-75 with increasing solid volume fraction in the present study appeared to be related to the magnitude of stress concentration at the interface between primary and eutectic phase, by which the fracture process was largely influenced. Based on the fractographic and micrographic observations, the mechanism associated with the beneficial effect of high solid volume fraction in thixoformed 357-T5 alloy was discussed.

  • PDF

반용융 재료의 물성치 평가에 관한 연구(II) -모델재료의 후방압출 실험과 상계해석을 통한 반용융 재료의 유동응력식 결정- (A Study on Material Characterization of Semi-Solid Materials(II) -Determination of Flow Stress For Semi-Solid Materials Using Backward Extrusion Experiment with Model Material and Upper Bound Analysis-)

  • 이주영;김낙수
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.374-383
    • /
    • 1999
  • To determine the flow stress of semi-solid materials, a new combined method has been studied by experimental and analytic technique in the current approach. Using backward extrusion experiment and its numerical analysis, the characterization scheme of semi-solid materials according to the change of initial solid volume fraction has been proposed. Because that solid volume fraction is sensitive to temperature change, it is required to precisely control the temperature setting. Model materials can guarantee the establishment of material characterization technique from the noise due to temperature change. Thus, clay mixed with bonded abrasives was used for experiment and the change of initial solid fraction was copied out through the variation of mixing ratio. Upper bound method was adapted to increase in efficiency of the calculation in numerical analysis and new kinematically admissible velocity field was employed to improve the accuracy of numerical solution. It is thought that the material characterization scheme proposed in this study can be applied to not only semi-solid materials, but also other materials that is difficult to obtain the simple stress state.

  • PDF

냉각판을 이용한 반응고 A356합금의 미세조직 (Microstructure of Semi-solid A356 Alloys made Using Cooling Plate)

  • 엄정필;김득규;윤병은;임수근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.148-159
    • /
    • 1997
  • In this study, microstructure, size of primary $\alpha$, solid fraction and hardness of A356 Al alloy, were investigated. Semi-solid A356 allos were obtained by semi-solid continuous casting apparatus consists of melting furnace, formation apparatus of granular primary $\alpha$ and continuous casting apparatus. Size of promary $\alpha$ and fraction solid were decreased with decreasing temperature, and with increasing volume of cooling water. At the cooling water temperature of 15$^{\circ}C$ and cooling water volume of 18.2$\ell$/min, the sizes of primary $\alpha$ phases were decreased up to 40${\mu}{\textrm}{m}$, and fraction solid was 0.68.

  • PDF

An experimental study and new correlations of viscosity of ethylene glycol-water based nanofluid at various temperatures and different solid concentrations

  • Bidgoli, Mahmood Rabani;Kolahchi, Reza;Karimi, Mohammad Saeed
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.93-102
    • /
    • 2016
  • This article presents an experimental study on the effect of temperature and solid volume fraction of nanoparticles on the dynamic viscosity for the CuO/EG-water nanofluid. Nanoparticles with diameter of 40 nm are used in the present study to prepare nanofluid by two-step method. A "Brookfield viscometer" has been used to measure the dynamic viscosity of nanofluid with solid volume fraction up to 2% at the temperature range between 20 to $60^{\circ}C$. The findings have shown that dynamic viscosity of nanofluid increases with increasing particle volume fraction and decreasing temperature. Nine different correlations are developed on experimental data point to predict the relative dynamic viscosity of nanofluid at different temperatures. To make sure of accuracy of the proposed correlations, margin of deviation is presented at the end of this study. The results show excellent agreement between experimental data and those obtained through the correlations.

True Sedimentation and Particle Packing Rearrangement during Liquid Phase Sintering

  • Lee, Jong-K.;Xu, Lei;Lu, Shu Zu
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.68-69
    • /
    • 2006
  • When an alloy such as Ni-W is liquid phase sintered, heavy solid W particles sedimentate to the bottom of the container, provided that their volume fraction is less than a critical value. The sintering process evolves typically in two stages, diffusiondriven macrosegregation sedimentation followed by true sedimentation. During macrosegregation sedimentation, the overall solid volume fraction decreases concurrently with elimination of liquid concentration gradient. However, in the second stage of true sedimentation, the average solid volume fraction in the mushy zone increases with time. It is proposed that the true sedimentation results from particle rearrangement for higher packing efficiency.

  • PDF

Synthesis of Solid Electrolyte Nasicon by Solid State Reaction

  • Kim, Cheol-Jin;Chung, Jun-Ki;Lim, Sung-Ki;Rhee, Meung-Ho
    • The Korean Journal of Ceramics
    • /
    • 제2권1호
    • /
    • pp.25-32
    • /
    • 1996
  • Solid electroyte nasion was synthesized by the optimized solid state reaction minimizing the volume fraction of secondary $ZrO_2$ and glassy phases. To compensate for the evaporation of Na and P during heat-treatment, excess Na and P were added to the starting composition $Na_{1+x} Zr_2 Si_x P_{d-x} O_{12}$ (x=2.1). Phases pure nasicon comparable in volume fraction to the one obtaied from sol-gel process were synthesized after the reaction at $1100~1150^{\circ}C$,$ P_{O2}>=0.1-0.15 $$ZrO_2$ increased with the heat-treatment time due to the decomposition of nasicon phase and that of glassy phase increased as partial oxygen pressure decreased. The synthesized nasion showed a good electrical conductivity of $-1{\times}10^{-2}({\omega}{\cdot}cm)^{-1}$ at $350^{\circ}C$.

  • PDF