• Title/Summary/Keyword: Solid Solution

Search Result 1,886, Processing Time 0.031 seconds

Synthesis of Cobalt Oxide Free Black Color Spinel Pigment (CoO가 첨가되지 않은 스피넬계 흑색안료의 합성)

  • Kim, Jun-Ho;Lee, Seong-Ho;Suh, Man-Chul;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.639-644
    • /
    • 2007
  • Spinel pigments, developing black color in high temperature glazes at oxidation or reduction atmosphere, without CoO because of its high price were synthesized by solid solution method. Ten mixed compositions consisted of NiO, MnO, $Fe_2O_3 and $Mn_2O_3$ were fired at $1250^{\circ}C$ for 1h. The resulting pigments were characterized by using XRD, FT-IR, SEM and UV-vis spectrometer. Structure of the pigments are spinel and particles' shape are spherical or cubic. Glazed tiles containing 5 wt% pigments were fired at $1260^{\circ}C$ and $1240^{\circ}C$ in reduction atmosphere. Color in glazes were analyzed by UV-vis spectrometer. Colors of NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.4875{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0125 mole% and NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.3875{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.1125 mole% in lime glaze showed black in oxidation, in reduction NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.4875{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0125 mole% and NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.4375{\cdot}Cr_2O_3$ $0.55{\cdot}Mn_2O_3$ 0.0125 mole% showed black. In case of lime-barium glaze, NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.3875{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.1125 mole%, NiO 0.975 MnO $0.075{\cdot}Fe_2O_3$ $0.4375{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0625 mole% and NiO 0.925 MnO $0.075{\cdot}Fe_2O_3$ $0.4375{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0625 mole% showed black color in oxidation and NiO 0.875 MnO $0.125{\cdot}Fe_2O_3$ $0.3875{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.1125 mole%, NiO 0.925 MnO $0.075{\cdot}Fe_2O_3$ $0.4375{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0625 mole% and NiO 0.725 MnO $0.275{\cdot}Fe_2O_3$ $0.4375{\cdot}Cr_2O_3$ $0.50{\cdot}Mn_2O_3$ 0.0625 mole% showed black one in reduction.

Development Status and Research Direction in the Mineral Carbonation Technology Using Steel Slag (제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향)

  • Son, Minah;Kim, Gookhee;Han, Kunwoo;Lee, Min Woo;Lim, Jun Taek
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • In the present paper, we investigated the development status of precipitated calcium carbonate (PCC) production using steel slag, which is one of mineral carbonation (MC) technologies, from the standpoint of $CO_2$ utilization. Principle, feature, and global and domestic development status of the mineral carbonation technology were discussed together with the overview of the production method and market of PCC. Mineral carbonation is known as stable and environmentally-friendly technology enabling economical treatment of industrials wastes. Typically, PCC is produced by the reaction of $CO_2$ with supernatant solution after Ca extraction from steel slag followed by the separation of solid and liquid. The development status of MC using steel slag is at the pilot stage (Slag2PCC at Aalto University), and there remains the process economics improvement for commercialization. Key technologies for the further development are efficient extraction of Ca ions from steel slag including impurities removal, valorization of PCC via shape and size control, usage development and value-addition of residual slag, and optimization of reaction conditions for continuous process setup, etc.

Potential of Coal Gasification Slag as an Alkali-activated Cement (석탄가스화 복합발전 슬래그의 알칼리 활성 시멘트로서의 가능성)

  • Kim, Byoungkwan;Lee, Sujeong;Chon, Chul-Min;Choi, Hong-Shik
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.38-47
    • /
    • 2018
  • Integrated gasification combined cycle (IGCC) is a next generation energy production technology that converts coal into syngas with enhanced power generation efficiency and environmental performance. IGCC produces almost coal gasification slag as the solid by-product. IGCC slag is generated about 140,000 tons for a year although recycling of it is still in the early stages. We evaluated the potential of IGCC slag which is generated from a pilot plant in South Korea as an alkali-activated cement. Samples which were activated with the combined activator of sodium silicate solution and caustic soda had an average compressive strength of 4.5 MPa, showing expansion. Expansion of the alkali-activated slag was presumed to be caused by free CaO in the slag, although it was not detected by the ethylene glycol method. Samples that were activated with the combined activator of sodium aluminate and caustic soda had an average compressive strength of 10 MPa. Hydroxy sodalite and $C_3AH_6$ were found to be the new crystalline phases. IGCC slag can be used as an alkali-activated material, but the strength performance should be improved with proper mix design approach to calculate optimum proportions which can alleviate the expansion issue at the same time.

Synthesis and Spectroscopic Characterization of Manganese(II), Iron(III) and Cobalt(III) Complexes of Macrocyclic Ligand. Potential of Cobalt(III) Complex in Biological Activity

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.919-925
    • /
    • 2011
  • A new series of manganese(II), iron(III) and cobalt(III) complexes of 14-membered macrocyclic ligand, (3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine) have been prepared and characterized by elemental analyses, IR, UV-VIS, $^1H$- and $^{13}C$- NMR spectra, magnetic susceptibilities, conductivities, and ESR measurements. Molar conductance measurements in DMF solution indicate that the complexes are electrolytes. The ESR spectrum for cobalt(III) complex in $CD_3OD+10%D_2O$ after exposure to $^{60}Co-{\gamma}$-rays at 77 K using a 0.2217 M rad $h^{-1}$ vicrad source showed $g_{\perp}$ > $g_{\parallel}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_z2$ orbital with covalent bond character. In this case, the ligand hyperfine tensors are nearly collinear with ${\gamma}$-tensors, so there is no major tendency to bend. Therefore, little extra delocalization via the ring lobe of the $dz^2$ orbital occurs. However, the ESR spectrum in solid state after exposure to $^{60}Co-{\gamma}$-rays at 77 K showed $g_{\parallel}$ > $g_{\perp}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_x2_{-y}2$ ground state as the resulting spectrum contains a large number of randomly oriented molecules provided that, the principle directions of g and A tensors. Manganese (II) complex 2, $[H_{12}LMn]Cl_4.2H_2O$, showed six isotropic lines characteristic to an unpaired electron interacting with a nucleus of spin 5/2, however, iron(III) complex 3, $[H_{12}LFe]Cl_5.H_2O$, showed spectrum of a high spin $^{57}Fe$ (I=1/2), $d^5$ configuration. The geometry of these complexes was supported by elemental analyses, IR, electronic and ESR spectral studies. Complex 1 showed exploitation in reducing the amount of electron adducts formed in DNA during irradiation with low radiation products.

Application of Continuous Stirred Tank Reactor Model for Water Quality Control and Management in Wetland Treatment (습지의 수질관리를 위한 연속교반탱크반응기 모델의 적용)

  • Kim, Kyung-Sub;Ahn, Tae-Jin;Kim, Min-Su
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.243-249
    • /
    • 2008
  • Continuous stirred tank reactor(CSTR) model which can be applied to control and management of the surface flow wetland is developed to simulate the water quality in this research. The model solution is obtained from the optimization model using the least-squares and 4th-order Runge-Kutta methods. The model is applied to simulate BOD and TSS in the wetland database of U.S. EPA, in which the hydraulic and water quality data are enough and the number of pond is just one for simple analysis of running results. The model is tested in two different cases, one constant volume case and another constant volume and flow rate case considering only reaction term, mass flux term and both reaction and mass flux terms respectively. It is found that the model simulates the real water quality very well with both reaction and mass flux terms rather than only reaction term and the settling velocity of TSS becomes $0.3{\sim}0.4\;m/d$. The model can be applied in wetlands treatment efficiently.

The properties and extracting conditions of juice preperation from Schizandra nigra Max. (흑오미자(Schizandra nigra Max) 즙액의 추출조건과 추출물의 특성)

  • 신수철;강성구;장미정
    • Korean Journal of Plant Resources
    • /
    • v.16 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • To determine the properties for juice preperation of Black Omija (Schizandra nigra Max.) and Omija (Schizandra chinensis), yield of extraction, chromaticity and lightness, pH and soluble solid of the extract were investigated. The rate of extract yield from Schizandra nigra was highest when extracted for 3 hours at 80$^{\circ}C$ in 20% ethanol solution. For the desirable chromaticity coordinates, the optimum extraction time and temperature of Schizandra nigra extract were 3 hours at 80$^{\circ}C$. The lightness of the extract was low of the value when extraction time and temperature was long and high. The sugar content of the extract of S. nigra was 2.0­2.6% Brix, lower than that of S. chinensis, but the difference was insignificant. The pH of the extract from S. nigra was 0.1­0.2 higher than that of S. chinensis. Although the pH of the extract from S. nigra was a little low when extracted by water, the pH range was enough to maintain the stability of color of extract from the S. chinensis.

X-ray Powder Diffraction Structural Phase-transition Study of $(Na_{0.7}Sr_{0.3})(Ti_{0.3}Nb_{0.7})O_3$using the Rietveld Method of Analysis (분말 X-선 회절의 리트벨트 해석법을 이용한 $(Na_{0.7}Sr_{0.3})(Ti_{0.3}Nb_{0.7})O_3$계에서의 구조 상전이 특성연구)

  • Jeong, Hun-Taek;Kim, Ho-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.748-753
    • /
    • 1995
  • Solid solution of NaNb $O_3$70 mol% and SrTi $O_3$30 mol% was single phase. A broad dielectric peak was found at about l00K. Crystal structure was analysed at room temperature and 12K using Rietveld analysis. The unit cell was assigned to have a a doubled lattice parameter of simple perovskite sturcture at room temperatue, the structure was orthorombic with space group Pmmn. At 12K, the structure was also orthorombic with space group Pnma. This structure change with temperature was due to the distortion of oxygen octahedron. This distortion of oxygen octahedron was made by the decrease of (Ti, Nb)-O bounds length with no variation of (Ti, Nb)-O-(Ti, Nb) bound angle. Therefore the broad dielectirc peak about l00K was attributed to the structural change casued by oxygen octahedron distortion.

  • PDF

A Study of Mechanical Properties With Variation of Heattreatments on HSLA Cast Steels Microalloyed With Nb, Ti, and V (Nb, Ti 및 V를 첨가한 HSLA 주강의 열처리 변화에 따른 기계적 특성 연구)

  • Park, Jae-Hyeon;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.760-769
    • /
    • 2000
  • Mechanical properties of HSLA cast steels alloyed with 0.15% Nb, Ti or V were tested as variations of austenizing temperatures and tempering times. The test results are as follows. The hardness of HSLA cast steels austenized for 2hrs at 115$0^{\circ}C$ was shown the highest value regardless of alloying elements and then decreased as the temperature decreased below 110$0^{\circ}C$. The hardness of HSLA cast steels with 0.15% Ti austenized for 2 hrs at $1150^{\circ}C$ was higher than that of any other HSLA cast steels, and chich was mainly attributed to the relatively high amount of bainite, and solid solution hardening. Charpy impact energy of HSLA cast steels was comparable to the C-Mn cast steel except HSLA cast steels with 0.15% Ti austenized at 115$0^{\circ}C$. The hardness of HSLA cast steels austenized for 2 hrs at $1150^{\circ}C$ increased at a ten-minute tempering, and after that, the hardness kept almost sililar level except HSLA cast steels with 0.15% V.

  • PDF

Strength Characteristics on Sulfuric Acid Corrosion of Recycled PET Polymer Concrete with Different Fillers (충전재 종류에 따른 PET재활용 폴리머콘크리트의 황산부식에 대한 강도 특성)

  • Jo Byung-Wan;Shin Kyung-Chul;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.499-504
    • /
    • 2005
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete Is drawing a strong interest as high-performance materials in the construction industry Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems Posed by plastics and save energy. An objective of this paper is to estimate the damage of sulfuric acid, through investigating recycled PET polymer concrete, immersed at sulfuric acid solution for 84 days. As a result of testing, recycled PET PC, used $CaCO_3$ as filler, makes a problem of appearance and strength if they are exposed for long term at corrosion environment. On the other hand, recycled PET PC, used fly-ash as filler, had less effect on decrease in weight and strength. Recycled PET PC is excellent chemical resistance, resulting in the role of unsaturated polyester resin which consists of polymer chain structure accomplishes bond of aggregates and filler strongly. Also, recycled PET PC, used fly-ash as filler, is stronger resistance of sulfuric acid corrosion than $CaCO_3$, because it is composed of $SiO_2$ and very strong glassy crystal structure. Therefore, recycled PET PC, used fly-ash as filler, is available under corrosion circumstances like sewer pipe or waste disposal plant.

Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery (차량용 12-V 납축전지의 충·방전 모델링)

  • Kim, Ui Seong;Jeon, Sehoon;Jeon, Wonjin;Shin, Chee Burm;Chung, Seung Myun;Kim, Sung Tae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.242-248
    • /
    • 2007
  • For an optimal design of automotive electric system, it is important to have a reliable modeling tool to predict the charge-discharge behaviors of the automotive battery. In this work, a two-dimensional modeling was carried out to predict the charge-discharge behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experimental data of the charge-discharge behaviors of a lead-acid battery. The discharge behaviors were measured with three different discharge rates of C/5, C/10, and C/20 at operating temperature of $25^{\circ}C$. The batteries were charged with constant current of 30A until the charging voltage reached to a predetermined value of 14.24 V and then the charging voltage was kept constant. The discharge and charge curves from the measurements and modeling were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, the porosity of the electrodes, and the current density within the electrodes as well as the acid concentration can be predicted as a function of charge and discharge time.