• Title/Summary/Keyword: Solid Insulation

Search Result 144, Processing Time 0.029 seconds

Thermal Insulation Effect of Inflatable Life Vest on the Drowned Individual estimated by Numerical Analysis (익수자 체온 저하에 미치는 팽창식 구명동의의 단열효과 수치 분석)

  • Kim, Sung Chan;Lee, Kyung Hoon;Hwang, Se Yun;Lee, Jin Sung;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.285-291
    • /
    • 2015
  • Exposure to cold sea water can be life-threatening to the drowned individual. Although appropriate life jacket can be usually be provided for the buoyance at the drowning accident, heat loss can make the drowned individual experience the hypothermia. Inflatable life jackets filled with inflatable air pocket can increase the thermal protection as well as the buoyancy force. Because it is important to know how the human body behaves unde the different life jacket, present study compares the thermal insulation capacity of solid type life jacket with that of inflatable life jacket. In order to represent the insulation capacity of life jacket, thermal resistance is estimated based on the assumption of steady-state. Also, a transient three-dimensional thermal distribution of the thigh is analyzed by using finite element method implementing the Pennes bioheat equation. The finite element model is a segmental, multi-layered representation of the body section which considers the heat conduction within tissue, bone, fat and local blood flow rate.

Effect of Foaming Agent Content on the Apparent Density and Compressive Strength of Lightweight Geopolymers (발포제 함량에 따른 경량 다공성 지오폴리머의 밀도와 강도 특성)

  • Lee, Sujeong;An, Eung-Mo;Cho, Young-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.363-370
    • /
    • 2016
  • Lightweight geopolymers are more readily produced and give higher fire resistant performance than foam cement concrete. Lowering the density of solid geopolymers can be achieved by inducing chemical reactions that entrain gases to foam the geopolymer structure. This paper reports on the effects of adding different concentrations of aluminum powder on the properties of cellular structured geopolymers. The apparent density of lightweight geopolymers has a range from 0.7 to $1.2g/m^3$ with 0.025, 0.05 and 0.10 wt% of a foaming agent concentration, which corresponds to about 37~60 % of the apparent density, $1.96g/cm^3$, of solid geopolymers. The compressive strength of cellular structured geopolymers decreased to 6~18 % of the compressive strength, 45 MPa of solid geopolymers. The microstructure of geopolymers gel was equivalent for both solid and cellular structured geopolymers. The workability of geopolymers with polyprophylene fibers needs to be improved as in fiber-reinforced cement concrete. The lightweight geopolymers could be used as indoor wall tile or board due to fire resistance and incombustibility of geopolymers.

Design and Self-sustainable Operation of 1 kW SOFC System (1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung;Nam, Suk-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

The Patent Analysis of the Treatment Technology of Asbestos Wastes (석면 폐기물 처리 특허기술 분석)

  • Kim, Jong-Heon;Cho, Jin-Dong;Lee, Sang-Kwon;Cha, Seong-Ki
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.451-462
    • /
    • 2011
  • Asbestos or its applications have been used for long times and for various purposes in our life because of their merits, namely fire resistance, electric insulation and chemical resistance capacity etc. Despite of theses many merits, one of the problems of asbestos is shown toxicity according to its fiber type. So we need data to solve about this problem. In this paper, we study on the technical method of asbestos waste treatment and on the trends of asbestos researches and developments by the analysis of its patents and DWPI database materials. As a result, the asbestos-waste treatment data in the its related patents is used 267 cases to analyze. These data are divided into 86(32.5%) cases of solid waste disposal(B09B). 41(16.6%) cases of separation(B01D) and 27(10.2%) of lime, magnesia, slag, cement and their composites(C04B).

VLS growth of ZrO2 nanowhiskers using CVD method

  • Baek, Min-Gi;Park, Si-Jeong;Jeong, Jin-Hwan;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.149-149
    • /
    • 2016
  • Ceramic is widely known material due to its outstanding mechanical property. Besides, Zirconia(ZrO2) has a low thermal conductivity so it is advantage in a heat insulation. Because of these superior properties, ZrO2 is attracted to many fields using ultra high temperature for example vehicle engines, aerospace industry, turbine, nuclear system and so on. However brittle fracture is a disadvantage of the ZrO2. In order to overcome this problem, we can make the ceramic materials to the forms of ceramic nanoparticles, ceramic nanowhiskers and these forms can be used to an agent of composite materials. In this work, we selected Au catalyzed Vapor-Liquid-Solid mechanism to synthesize ZrO2 nanowhiskers. The ZrO2 whiskers are grown through Hot-wall Chemical Vapor Deposition(Hot wall CVD) using ZrCl4 as a powder source and Au film as a catalyst. This Hot wall CVD method is known to comparatively cost effective. The synthesis condition is a temperature of $1100^{\circ}C$, a pressure of 760torr(1atm) and carrier gas(Ar) flow of 500sccm. To observe the morphology of ZrO2 scanning electron microscopy is used and to identify the crystal structure x-ray diffraction is used.

  • PDF

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

Fabrication SiCN micro structures for extreme high temperature systems (초고온 시스템용 SiCN 마이크로 구조물 제작)

  • Thach, Phan Dui;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.216-216
    • /
    • 2009
  • This paper describes a novel processing technique for the fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for extreme microelectromechanical system (MEMS) applications. A polydimethylsiloxane (PDMS) mold was formed on an SU-8 pattern using a standard UV photolithographic process. Next, the liquid precursor, polysilazane, was injected into the PDMS mold to fabricate free-standing SiCN microstructures. Finally, the solid polymer SiCN microstructure was cross-linked using hot isostatic pressure at $400^{\circ}C$ and 205 bar. The optimal pyrolysis and annealing conditions to form a ceramic microstructure capable of withstanding temperatures over $1400^{\circ}C$ were determined. Using the optimal process conditions, the fabricated SiCN ceramic microstructure possessed excellent characteristics includingshear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$, and BDV (1.2 kV, minimum). Since the fabricated ceramic SiCN microstructure has improved electrical and physical characteristics compared to bulk Si wafers, it may be applied to harsh environments and high-power MEMS applications such as heat exchangers and combustion chambers.

  • PDF

The structure properties of polymer composite (고분자 복합재료의 구조적 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Nam, Sung-Pill;Kim, Da-Mi;Ahn, Byeong-Lib;Won, Woo-Sik;Woo, Hyoung-Gwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.262-263
    • /
    • 2009
  • To add Nanofiller in the epoxy which is used with the solid insulation material of existing and is a research which observes the improvement of the structural quality to produce the Nanocomposite. Montmorillonite uses with Nanofiller, MMT of the content expense (wt%) which is various and mixed an epoxide and produced sample. According to content of the sample result MMT according to respectively content expense to measure SEM photographing which is the possibility of knowing the minute structure of section with sample where is produced and the tensile strength will be able to observe the change of quality. MMT silicate layer uniformly more in the result and within epoxy matrix, being dispersed, will be able to observe.

  • PDF

Reliability Assessment of High Voltage Rotating Machine Stator Windings Through Off-line Diagnosis (고압회전기기 고정자권선의 Off-line 진단을 통한 신뢰성 평가)

  • Chang, Jeong-Ho;Lim, Jae-Il;Lee, Dong-Keun;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1628-1629
    • /
    • 2011
  • 산업현장에서는 회전기기의 고체절연시스템(solid insulation system)의 열화정도를 평가하기 위하여 일정 진단주기에 맞춰 Off-line 상태에서 직류시험 및 교류시험을 통하여 효과적으로 절연물에 대한 상태평가를 시행하고 있다. 직류시험으로는 절연저항, 성극지수(PI) 시험 등이 있으며 교류시험으로는 교류전류시험(${\Delta}I$), 유전정접시험(${\Delta}tan{\delta}$), 부분방전(PD)시험이 있다. 여기서 부분방전은 절연체의 국부적인 열화현상을 추정할 수 있는 중요한 파라미터로, 부분방전시험(PD test)을 통하여 고정자권선(stator winding)에 대한 절연특성을 효과적으로 진단할 수 있다. 고압 전동기는 기동정지의 빈번함과 장기간 운전에 의해 열적, 전기적, 기계적 스트레스를 받게 되고, 이로 인해 과열, 진동, 절연파괴에 이르는 문제점이 발생되어 결국 시스템의 운전정지를 초래하는 심각한 사고로 이어질 수 있다. 따라서 고압 전동기의 절연상태를 주기적으로 감시하고 사고 징후를 검출하여 시스템을 안정적으로 운영하기 위한 고압 전동기 Off-line 절연진단에 대하여 기술하고 수차발전기에 대한 절연상태진단 결과를 바탕으로 절연시스템의 신뢰성 평가 방법에 대하여 고찰하고자 한다.

  • PDF

Properties and Classification of Patterns of Air Discharges (기중방전의 방전원별 특성분석 및 패턴분류)

  • Park, Yeong-Guk;Lee, Gwang-U;Jang, Dong-Uk;Gang, Seong-Hwa;Jeong, Gwang-Ho;Kim, Wan-Su;Lee, Yong-Hui;Im, Gi-Jo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • Partial discharges(PD)in air insulated electric power apparatus often lead to deterioration of solid insulation by electron bombardments and electrochemical reaction. The PD caused to reduce the life time of power apparatus and to increase power losses. Thus understanding and classification of PD patterns in air are very important to discern sources of PD. In this paper, PD in air by using statistical methods was investigated. We classified air discharges, corona, surface discharges and cavity discharges by Kohonen network. For classification of PD patterns, we used statistical operators and parameters such as skewness$(S^+,\; S^-),\; kurtosis(K^+, K^-),\; mean phase(AP^+, AP^-)$, cross-correlation factor(CC) and asymmetry derived from the mean pulse-height phase distribution$(H_{avg}(\phi))$, the max pulse-height phase distribution $(H_{qmax}(\phi))$, the pulse count phase distribution $(H_n(\phi))$ and the pulse height vs. Repetition rate $(H_q(n))$.

  • PDF