• Title/Summary/Keyword: Solid Element

Search Result 983, Processing Time 0.023 seconds

A topology optimization method of multiple load cases and constraints based on element independent nodal density

  • Yi, Jijun;Rong, Jianhua;Zeng, Tao;Huang, X.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.759-777
    • /
    • 2013
  • In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated ad minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used a the design variable. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such ad the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

  • Ha, Seung-Ryong
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.475-483
    • /
    • 2015
  • PURPOSE. The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS. The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS. Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION. The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns.

Coupled Finite Element Analysis for Semi-implicit Linear and Fully-implicit Nonlinear Scheme in Partially Saturated Porous Medium

  • Kim, Jae-Hong;Regueiro, Richard A.
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 2010
  • The paper presents a comparison between a semi-implicit time integration linear finite element implementation and fully-implicit nonlinear Newton-Raphson finite element implementation of a triphasic small strain mixture formulation of an elastic partially saturated porous medium. The pore air phase pressure pa is assumed atmospheric, i.e., $p_a$ = 0, although the formulation and implementation are general to handle increase in pore air pressure as a result of loading, if needed. The solid skeleton phase is assumed linear isotropic elastic and partially saturated 'consolidation' in the presence of surface infiltration and traction is simulated. The verification of the implementation against an analytical solution for partially saturated pore water flow (no deformation) and comparison between the two implementations is presented and the important of the porosity-dependent nature of the partially saturated permeability is assessed on comparison with a commercial code for the partially saturated flow with deformation. As a result, the response of partially saturated permeability subjected to the porosity influences on the saturation of a soil, and the different behaviors of the partially saturated soil between staggered and monolithic coupled programs is worth of attention because the negative pore water pressure in the partially saturated soil depends on the difference.

Vibration Analysis of Pretwisted Composite Plates with Embedded Viscoelastic Core using Zig-Zag Triangular Finite Element (지그재그 삼각형 유한요소를 이용한 점탄성물질이 심어진 비틀린 복합재료판의 진동해석)

  • Lee,Deok-Gyu;Jo,Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • A three node triangular element with drilling rotations incorporating improved higher-order zig-zag theory(HZZT) is developed to analyze the vibration of pretwisted composite plates with embedded damping layer. Shear force matching conditions are enforced along the interfaces between the embedded damping patch and the border patch by matching the shear forces of the embedded damping patch to the shear forces of the adjacent border patch. The natural frequencies and modal loss factors are calculated for cantilevered pretwisted composite blade with damping core with the present triangular element, and compared to experiments and MSC/NASTRAN using a layered combination of plate and solid elements.

Dynamic analysis of Pine Flat dam-reservoir system utilizing Hagstrom-Warburton truncation boundary condition

  • Solmaz Dehghanmarvasty;Vahid Lotfi
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.365-389
    • /
    • 2023
  • Dynamic analysis of a typical concrete gravity dam-reservoir system is formulated by FE-(FE-TE) approach (i.e., Finite Element-(Finite Element-Truncation Element)). In this technique, dam and reservoir are discretized by plane solid and fluid finite elements. Moreover, the H-W (i.e., Hagstrom-Warburton) high-order condition imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model. The formulation is initially reviewed which was originally proposed in a previous study. Thereafter, the response of Pine Flat dam-reservoir system is studied due to horizontal and vertical ground motions for two types of reservoir bottom conditions of full reflective and absorptive. It should be emphasized that study is carried out under high order of H-W condition applied on the truncation boundary. The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by FE-(FE-HE) approach (referred to as exact method). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

High Velocity Impact Analysis of Kevlar29/Phenolic Composite Plate (케블라 복합재 평판의 고속충돌 특성 수치해석)

  • Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.18-23
    • /
    • 2009
  • Failure of Kevlar29/Phenolic composite plate under high velocity impact of FSP(Fragment Simulation Projectile) is investigated using a non-linear explicit finite element code, LS-DYNA. Composite laminate and impactor are idealized by solid element and interface between laminas are modeled by tied-break element in LS-DYNA. Interaction between impactor and laminate is simulated face-to-face eroding contact algorithm. When the stress level meets a failure criteria, the layer in the element is eroded. Numerical results are verified by existing test results.

Refined finite element modelling of circular CFST bridge piers subjected to the seismic load

  • Faxing Ding;Qingyuan Xu;Hao Sun;Fei Lyu
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.643-658
    • /
    • 2024
  • To date, shell-solid and fibre element model analysis are the most commonly used methods to investigate the seismic performance of concrete-filled steel tube (CFST) bridge piers. However, most existing research does not consider the loss of bearing capacity caused by the fracture of the outer steel tube. To fill this knowledge gap, a refined finite element (FE) model considering the ductile damage of steel tubes and the behaviour of infilled concrete with cracks is established and verified against experimental results of unidirectional, bidirectional cyclic loading tests and pseudo-dynamic loading tests. In addition, a parametric study is conducted to investigate the seismic performance of CFST bridge piers with different concrete strength, steel strength, axial compression ratio, slenderness ratio and infilled concrete height using the proposed model. The validation shows that the proposed refined FE model can effectively simulate the residual displacement of CFST bridge piers subjected to highintensity earthquakes. The parametric analysis indicates that CFST piers hold sufficient strength reserves and sound deformation capacity and, thus, possess excellent application prospects for bridge construction in high-intensity areas.

Natural time period equations for moment resisting reinforced concrete structures comprising hollow sections

  • Prajapati, Satya Sundar;Far, Harry;Aghayarzadeh, Mehdi
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.317-325
    • /
    • 2020
  • A precise estimation of the natural time period of buildings improves design quality, causes a significant reduction of the buildings' weight, and eventually leads to a cost-effective design. In this study, in order to optimise the reinforced concrete frames design, some symmetrical and unsymmetrical buildings composed of solid and hollow members have been simulated using finite element software SAP 2000. In numerical models, different parameters such as overturning moment, story drift, deflection, base reactions, and stiffness of the buildings were investigated and the results have been compared with strength and serviceability limit criteria proposed by Australian Standard (AS 3600 2018). Comparing the results of the numerical modelling with existing standards and performing a cost analysis proved the merits of hollow box sections compared to solid sections. Finally, based on numerical simulation results, two equations for natural time period of moment resisting reinforced concrete buildings have been presented. Both derived equations reflected higher degree of correlation and reliability with different complexities of building when compared with existing standards and relationships provided by other scholars. Therefore, these equations will assist practicing engineers to predict elastic behaivour of structures more precisely.

A Study on the Product Design and Prototype Manufacturing of a Plastic V-Belt Pulley (플라스틱 V-벨트 풀리 설계 및 시작품 제작에 관한 연구)

  • Son, Tae-Yil;Rim, Jae-Kyu;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.281-286
    • /
    • 2001
  • In this study, product design and prototype manufacturing of a plastic water-pump pulley has been tried. The designed model is supposed to be made of 33 % glass reinforced resin of which the tensile strength is 180 MPa, and has 24 ribs on each side to increase its structural strength. Structural analysis under a static load of 300 kgf acting on both edges of the belt has been carried out using a commercial finite element code, MARC. The analysis result showed the maximum effective stress near a rib of designed model would be at most 35 MPa (less than 20% of the tensile strength), therefore, the plastic product would be sufficiently safe under that loading condition. On the basis of the structural analysis, a prototype of the designed model has been manufactured by using the fused deposition modelling (FDM) method which is one of the rapid prototyping (RP) methods, using ABS resin and support materials. The CAD data exported to the RP system in STL format was prepared by a commercial solid modeling software, SolidWorks. It has been proved that the plastic pulley can successfully replace the existing flow-formed steel product.

  • PDF

Mold Filling Analysis and Post-deformation Analysis of Injection-molded Aspheric Lenses for a Mobile Phone Camera Module (휴대폰 카메라용 비구면렌즈의 성형해석 및 후변형해석)

  • Park, Keun;Eom, Hyeju;Ahn, Jong-Ho
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.12-17
    • /
    • 2012
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, a full-3d simulation based on solid elements has been reported as a reliable approach. The present work covers three-dimensional injection molding simulation and relevant deformation analysis of an injection molded plastic lens based on 3d solid elements. Numerical analyses have been applied to the injection molding processes of three aspheric lenses for an image sensing module of a mobile phone. The reliability of the proposed approach has been verified in comparison with the experimental results.

  • PDF