• Title/Summary/Keyword: Solid Circulating Rate

Search Result 25, Processing Time 0.019 seconds

Effects of Operating Variables on the Solid Circulation Rate in a Three-phase Circulating Fluidized Bed

  • Kim, Min Kon;Hong, Sung Kyu;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.440-444
    • /
    • 2015
  • Effects of operating variables on the solid circulation rate were investigated in a three-phase circulating fluidized bed, of which inside diameter was 0.102m and height was 3.5m, respectively. Gas velocity, primary and secondary liquid velocities, particle size and height of solid particles piled up in the solid recycle device were chosen as operating variables. The solid circulation rate increased with increasing primary and secondary liquid velocities and height of solid particles piled up in the solid recycle device, but decreased with increasing particle size. The value of solid circulation rate decreased only slightly with increasing gas velocity in the riser. The values of solid circulation rate were well correlated in terms of dimensionless groups within the experimental conditions.

Axial Solid Holdup in a Circulating Fluidized Bed Plasma Reactor under Reduced Pressure (감압 순환유동층 플라즈마 반응기의 축방향 고체체류량)

  • Park, Sounghee
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.527-532
    • /
    • 2016
  • The effects of gas velocity and solid circulation rate on the axial solid holdup distribution have been determined in a 10 mm-I.D. ${\times}$ 800 mm-high circulating fluidized bed plasma reactor under reduced pressure (1torr). Polystyrene polymer powder and nitrogen gas are used as solid and gas materials respectively. The change of solid circulation rate by a large gas flow rate of the riser (40~80 sccm) is also possible by a relatively small gas flow rate of the solid recirculation part (6.6~9.9 sccm). The solid circulation rate in the reactor under reduced pressure increases with increasing aeration velocity in the solid recirculation part. The axial solid holdup in the riser decreases from the dense at the bottom to the dilute phase at the top section of the riser. Solid holdups at the axial positions in the riser increase linearly with increasing solid circulating velocity. From these results, we could determine the position of plasma load for good plasma ignition, maintain and plasma reaction.

Measurement of Heat Transfer Rates and Pressure Drops in a Solid Particle Circulating Fluidized Heat Exchanger (고체입자 순환유동층 열교환기의 열전달률 및 압력강하 측정)

  • 이금배;전용두;박상일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.817-824
    • /
    • 2000
  • The fluidized solid particles not only increase heat transfer rates but have a cleaning function eliminating contaiminated substances caused from condensate water. An experiment was performed to measure heat transfer rates and pressure drops in a fluidized heat exchanger with circulating solid particle for constant heat transfer rate. As a results, the heat transfer rate increased by 26.9~2.6%, heat transfer coefficient by 11.9~2.7%, and pressure drop by 79.1~10.9% at the gas velocity of 6.1 ~12.1 m/s and solid particle flow rate of 100~50 kg/h with the heat exchanger of H: 50 mm, $D_p=2 in,\; and\;D_{BP}$=30 mm.

  • PDF

Holdup and Flow Behavior of Fluidized Solid Particles in a Liquid-Solid Circulating Fluidized Bed

  • Lim, Dae Ho;Lim, Ho;Jin, Hae Ryong;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.371-377
    • /
    • 2014
  • Characteristics of holdup and flow behavior of fluidized solid particles were investigated in a liquid-solid circulating fluidized bed ($0.102m{\times}3.5m$). Effects of liquid velocity ($U_L$), particle size ($d_P$) and solid circulation rate ($G_S$) on the solid holdup, overall particle rising velocity, slip velocity between liquid and particles and hydrodynamic energy dissipation rate in the riser were examined. The particle holdup increased with increasing $d_P$ or $G_S$ but decreased with increasing $U_L$. The overall particle rising velocity increased with increasing $U_L$ or $G_S$ but decreased with increasing $d_P$. The slip velocity increased with increasing $U_L$ or $d_P$ but did not change considerably with $G_S$. The energy dissipation rate, which was found to be closely related to the contacting frequency of micro eddies, increased with increasing $d_P$, $G_S$ or $U_L$. The solid particle holdup was well correlated with operating variables such as $U_L$, $d_P$ and $G_S$.

Solid Circulation Rate in a 3-phase (gas/liquid/solid) Viscous Circulating Fluidized Bed

  • Jang, Hyung Ryun;Yoon, Hyuen Min;Yang, Si Woo;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.186-190
    • /
    • 2018
  • For the first time, the characteristics of solid circulation rate ($G_S$) were investigated in a three-phase (gas-liquid-solid) viscous circulating fluidized bed (TPCFB). The solid circulation rate was controlled separately by adjusting the experimental apparatus as well as operating variables. Effects of primary and secondary liquid velocities ($U_{L1}$ and $U_{L2}$), gas velocity ($U_G$), particle size ($d_p$), height of particles piled up in the solid recycle device (h), and viscosity of continuous liquid media (${\mu}_L$) on the value of $G_S$ were determined. The experimental results showed that the value of $G_S$ increased with increases in the values of $U_{L1}$, $U_{L2}$, h and ${\mu}_L$, while it decreased with increasing $U_G$ and $d_p$ in TPCFBs with viscous liquid media. The values of $G_S$ were well correlated in terms of dimensionless groups within this experimental conditions.

Effect of Secondary Air Injection on Emission from Sludge Incineration in a Batch-type Internally Cycloned Circulating Fluidized Bed Combustor (배치형 내부 사이클론식 순환유동층 연소로내 2차 공기 주입에 의한 슬러지 소각 유해 배가스 저감효과)

  • Jang, Seuk-Don;Shin, Dong-Hoon;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.16-22
    • /
    • 2002
  • Combustion performance of an internally cycloned circulating fluidized bed for paper sludge was discussed through a series of batch type experiments. Operation parameters such as water content, feeding mass of sludge and secondary air injection rate were varied to find out the effect on the combustion performance, which was examined with carbon conversion rate and pollutant emission such as CO and NOx. A conventional solid fuel reaction was observed in the experiments of varying water content and feeding mass of the sludge, which is characterized with kinetic limited reaction zone, diffusion limited reaction zone and transition zone. Secondary air injection with swirl enhances the mixing of the gas phase as well as the solid phase, and improves combustion efficiency accompanied with higher carbon conversion rate and lower pollutant emission rate.

  • PDF

Effect of Solid Mass Inventory on Hydrodynamics Characteristics in a Circulating Fluidized Bed (순환유동층에서 유동매체량에 따른 수력학적 특성 연구)

  • Kim, E.K.;Shin, D.;Lee, J.;Kim, J.;Hwang, J.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.10-20
    • /
    • 2002
  • This paper discusses effect of solid mass inventory on the hydrodynamic characteristics of circulating fluidized bed(CFB). Operating parameters of solid mass inventory and air flow rates were varied to understand their effects on fludization pattern. Experimental measurements were made in a CFB of which height and diameter are 3m and 0.05m respectively. Black SiC particles ranging from $100{\mu}m\;to\;500{\mu}m$ were employed as the bed material. Superficial gas velocity of riser and J-valve fluidizing velocity were in the ranges of $1.39{\sim}3.24m/s\;and\;0.139{\sim}0.232m/s$, respectively. The axial solid fraction and solid circulation rate of CFB were calculated based on the experimental data and compared with modellings through IEA-CFBC Model and commercial CFD code.

  • PDF

Hydrodynamic Characteristics of Circulating Fluidized Bed in Different Mass Inventories (순환유동층에서 Solid Mass Inventory에 따른 수력학적 특성 연구)

  • Kim, E.G.;Shin, D.H.;Hwang, J.;Lee, J.;Kim, J.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.165-172
    • /
    • 2002
  • This paper discusses hydrodynamic characteristics of cold circulating fluidized bed(CFB) in different solid mass inventories. Operating parameters of solid mass inventory, primary air and J-valve fluidizing air were varied to find out the effect on the flow fludization pattern. Experimental measurements were made in a 3m tall CFB that has 0.05m riser diameter and black silica-carbonate of particle sizes from $100{\mu}m$ to $500{\mu}m$ were employed as the bed material. The operating conditions of superficial gas velocity and J-valve fluidizing velocity were in the ranges of 1.39~3.24 m/s and 0.139~0.232 m/s respectively. The axial solid fraction and solid circulation rate of CFB were observed and compared with modelling through IEA-CFBC Model and commercial CFD code.

  • PDF

Solid Circulation Rate in a Viscous Liquid-Solid Circulating Fluidized Bed (점성유체 액/고 순환유동층에서 입자의 순환속도)

  • Hong, Sung Kyu;Jang, Hyung Ryun;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.706-711
    • /
    • 2016
  • Characteristics of solid circulation rate in the liquid-solid circulating fluidized beds with viscous liquid medium were investigated. Effects of primary and secondary liquid velocities, particle size, liquid viscosity and height of solid particles piled up in the solid recycle device on the solid circulation rate were considered. The solid circulation rate increased with increasing primary and secondary liquid velocities, liquid viscosity and height of solid particles in the downcommer, but it decreased with increasing particle size. The particle rising velocity in the riser decreased with increasing the ratio of $U_{L1}/U_{L2}$ and particle size. The slip velocity of liquid and particle, $U_L/U_S$, decreased with increasing liquid viscosity but it increased with increasing particle size. The values of solid circulation rate were well correlated in terms of operating variables and dimensionless groups.

A Study on Prediction Model of Flow and Heat Transfer in the Circulating Fluidized Bed Heat Exchanger with Multiple Vertical Tubes (다관형 순환유동층 열교환기의 유동 및 전열성능 예측모델 연구)

  • Park, Sang-Il
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1199-1204
    • /
    • 2006
  • The pressure drop and heat transfer coefficient were measured at room temperature in CFB heat exchanger with multiple vertical tubes. Also the circulation rate of solid particles was measured. The theoretical model for predicting heat transfer coefficient using the solid flowrate was developed in this study. The model predictions were compared with the measured heat transfer coefficient to show relatively good agreement.

  • PDF