• Title/Summary/Keyword: Solenoid coils

Search Result 60, Processing Time 0.025 seconds

A Study of Micro, High-Performance Solenoid-Type RF Chip Inductor (Solenoid 형태의 소형.고성능 RF Chip 인덕터에 대한 연구)

  • Kim, Jae-Uk;Yun, Ui-Jung;Jeong, Yeong-Chang;Hong, Cheol-Ho;Seo, Won-Chang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.5
    • /
    • pp.283-288
    • /
    • 2000
  • In this work, small-size, high-performance simple solenoid-type RF chip inductors utilizing an Al2O3 core material were investigated. Copper (Cu) wire with $40\mum$ diameter was used as the coils and the size of the chip inductor fabricated in this work was $2.1mm\times1.5mm\times1.0mm$. The external current source was applied after bonding Cu coil leads to gold pads electro-plated on each end of backsides of a core material. High frequency characteristics of the inductance (L), quality factor (Q), and impedance (Z) of developed inductors were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). This HP4291B was also used to obtain the equivalent circuit and its circuit parameters of the chip inductors. This HP4291B was also used to obtain the equivalent circuit and its circuit parameters of the chip inductors. The developed inductors have the self-resonant frequency (SRF) of 1.1 to 3.1 GHz and exhibit L of 22 to 150 nH. The L of the inductors decreases with increasing the SRF. The Z of the inductors has the maximum value at the SRF and the inductors have the quality factor of 70 to 97 in the frequency range of 500 MHz to 1.5 GHz.

  • PDF

Investigation of Electromagnetic Force for Magnetic Contactor of Railway Vehicles (철도차량용 전자접촉기 전자코일의 전자기력 특성 연구)

  • Jung, Jooyoung;Park, Ji-Won;Choi, Jinnil
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.324-330
    • /
    • 2016
  • A magnetic contactor is a switching device widely used for electric circuits. For the operation of magnetic contactors, magnetic coils are essential; these coils create and interrupt the electric circuit. In this paper, the finite element analysis model was developed to reflect the experimental data, and was verified through alteration of the applied voltages and the numbers of turns. Effects of electromagnetic force on the geometrical variations of the facing poles for fixed and moving cores of two magnet coils were investigated. In addition, effects of slope and air gap size between two facing poles on the electromagnetic force were explored through the distribution of the magnetic flux density in the magnetic coils of a push-type solenoid. Through this analysis, the characteristics of the electromagnetic force against the facing poles were explored.

A Fault Detection Method for Solenoid Valves in Urban Railway Braking Systems Using Temperature-Effect-Compensated Electric Signals (도시철도차량 제동장치의 솔레노이드 밸브에 대한 전류기반 고장진단기법 개발)

  • Seo, Boseong;Lee, Guesuk;Jo, Soo-Ho;Oh, Hyunseok;Youn, Byeng D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.835-842
    • /
    • 2016
  • In Korea, urban railway cars are typically maintained using the strategy of predictive maintenance. In an effort to overcome the limitations of the existing strategy, there is increased interest in adopting the condition-based maintenance strategy. In this study, a novel method is proposed to detect faults in the solenoid valves of the braking system in urban railway vehicles. We determined the key component (i.e., solenoid valve) that leads to braking system faults through the analysis of failure modes, effects, and criticality. Then, an equivalent circuit model was developed with the compensation of the temperature effect on solenoid coils. Finally, we presented how to detect faults with the equivalent circuit model and current signal measurements. To demonstrate the performance of the proposed method, we conducted a case study using real solenoid valves taken from urban railway vehicles. In summary, it was shown that the proposed method can be effective to detect faults in solenoid valves. We anticipate the outcome from this study can help secure the safety and reliability of urban railway vehicles.

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

A MICRO FLUXGATE SENSOR IN PRINTED CIRCUIT BOARD (PCB) (인쇄회로 기판에 내장된 마이크로 플럭스게이트 센서)

  • 최원열;황준식;나경원;강명삼;최상언
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.151-155
    • /
    • 2002
  • This paper presents a micro fluxgate magnetic sensor in printed circuit board (PCB). The fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a micro patterned amorphous magnetic ribbon with extremely high DC permeability of ∼100,000 and the core has a rectangular-ring shape. The amorphous magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. Four outer layers as an excitation and pick-up coils have a planar solenoid structure. The chip size of the fabricated sensing element is 7.3${\times}$5.7m㎡. Excellent linear response over the range of -100${\mu}$T to +100${\mu}$T is obtained with 540V/T sensitivity at excitation square wave of 3V$\_$P-P/ and 360kHz. The very low power consumption of ∼8mW was measured. This magnetic sensing element which measures the lower fields than 50${\mu}$T, is very useful for various applications such as: portable navigation systems, military research, medical research, and space research.

  • PDF

Embedded Micro Fluxgate Sensor in Printed Circuit Board (PCB) (PCB 기판에 내장된 마이크로 플럭스게이트 센서)

  • 최원열;황준식;강명삼;최상언
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.702-707
    • /
    • 2002
  • This paper presents a micro fluxgate sensor in printed circuit board (PCB). The fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a micro patterned amorphous magnetic ribbon and the core has a rectangular-ring shape. The amorphous magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. Four outer layers as an excitation and pick-up coils have a planar solenoid structure. The chip size of the fabricated sensing element is 7.3$\times$5.7$\textrm{mm}^2$. Excellent linear response over the range of -100$\mu$T to +100$\mu$T is obtained with 540V/T sensitivity at excitation square wave of 3 $V_{p-p}$ and 360kHz. The very low power consumption of ~8mW was measured. This magnetic sensing element, which measures the lower fields than 50$\mu$T, is very useful for various applications such as: portable navigation systems, military research, medical research, and space research.h.

High Sensitivity Micro-fabricated Fluxgate Sensor with a Racetrack Shaped Magnetic Core

  • Choi, Won-Youl;Kim, So-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.110-114
    • /
    • 2005
  • We present a micro fluxgate magnetic sensor having solenoid coils and racetrack shaped magnetic core, which was designed to decrease the .operating power and magnetic flux leakage. Electroplated copper coils of $6\;{\mu}m$ thickness and the core of $3\;{\mu}m$ thickness were separated by benzocyclobutane (BCB) having a high insulation and good planarization characters. Permalloy $(Ni_{0.8}Fe_{0.2})$ as a magnetic core was also electroplated under 2000 gauss to induce the magnetic anisotropy. The core had the high DC effective permeability of $\~1,300$ and coercive field of $\~0.1$ Oe. The fabricated fluxgate sensor had the very small actual size of $3.0\times1.7\;mm^2$. The fluxgate sensor with a racetrack shaped core had the high sensitivity .of $\~350$ V/T at excitation condition of 3 $V_{P-P}$ and 2 MHz square wave. When two fluxgates were perpendicularly aligned in terrestrial field, their two-axis output signals were very useful to commercialize an electronic azimuth compass for the portable navigation system.

Variation of Characteristics of Solenoid-Type RF Chip Inductors on Inductor Size (인덕터 크기에 따른 솔레노이드 형 RF 칩 인덕터 특성 변화)

  • Yun, Eui-Jung;Kim, Jae-Wook
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.339-343
    • /
    • 2006
  • In this study, the variations of the important characteristics of solenoid-type RF chip inductors utilizing a low-loss A1203 core material on inductor dimensions were investigated systematically. Four dimensions of the chip inductors fabricated in this work were $1.0\times0.5\times0.5mm^3,\;1.5\times1.0\times0.7mm^3,\;2.1\times1.5\times1.0mm^3,\;and\;2.4\times2.0\times1.4mm^3$ and copper (Cu) wire with $40{\mu}m$ diameter was used as the coils. High frequency characteristics of the inductance, quality factor, and impedance of developed inductors as a function of inductor dimensions were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). It was observed that the developed inductors with the number of turns of 6 have the inductance (L) of 12 to 82 nH and exhibit the self-resonant frequency (SRE) of 3.6 to 1.2 GHz. The SRF of inductors decreases with increasing the inductor size while the L increases with the inductor size. The smallest inductors of $1.0\times0.5\times0.5mm^3$ exhibited the L of 12 nH, SRF of 3.6 GHz, and the quality factor of 67 near the frequency of 1.1 GHz. The calculated data predicted the high-frequency data of the L, and Q of the developed inductors well.

Construction of Low Magnetic Standard System using a Multi-layer Solenoid with Single-current (단전류-다층 솔레노이드 방법을 사용한 저자장 표준시스템 제작)

  • 박포규;김영균
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.1
    • /
    • pp.38-44
    • /
    • 2001
  • The magnetic field standard below 1 mT with the resolution of 0.26 nT has been established. Earth magnetic field (EMF) is compensated automatically down to 0.1 nT/10 min. by a closed feedback system with Cs optical pumping magnetometer and 3-axis Helmholtz coils in nonmagnetic facilities. A multi-layer precision solenoid with the optimized single-current method generates the uniform magnetic field better than 1.0$\times$10$\^$-7/ within $\pm$ 1 cm region at its center. The coil constant of solenoid determined from Helium optical pumping magnetometer is 1.231 058 9 mT/A, and temperature coefficient is 0.38 nT/$\^{C}$. This standard system is used for calibration of low field magnetometers and testing relates to low field.

  • PDF

The Effect of Coating Material of Copper-wire RF Coil on the Signal-to-Noise Ratio in MR Images (RF코일로 사용된 구리선 코팅재질이 자기공명영상에서의 신호대잡음비에 미치는 영향)

  • Lee, Hyeon-Seung;Moon, Hye-Young;Chang, Yong-Min;Hong, Kwan-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.171-176
    • /
    • 2009
  • Purpose : To investigate the effect of coating material in RF coil, which is one of main parts in MRI machine, on the Q-factor and SNR(signal-to-noise ratio) in MR images. Materials and Methods : RF coils with inner diameter of 1.7 mm were made by using copper wires coated with polyester, polyurethane, polyimide, polyamideimide, and polyester-imide, and by using copper wires in which coating materials had been removed. Q-factors of the RF coils were measured by network analyzer, and SNR values in the spin-echo MR images obtained by 600 MHz (14.1 T, Bruker DMX600) micro-imaging system for the coated and uncoated cases. Results : The measured SNRs were almost same for the RF coils with coat-removed copper wires, however SNRs and Q-factors were different for the coated cases depending on the coating material. They were maximized in the polyurethane-coated case in which the SNR was > 30% greater than polyester-coated case. Conclusion : We made solenoid-type RF coils which were easily used for MR micro-imaging in Bruker MRI probe. There was a significant coating-material dependence in the measured Q values and SNRs for the home-made RF coils. The study demonstrated that the choice of coating material of RF coil may be a critical factor in the MRI sensitivity based on SNR value.

  • PDF