• Title/Summary/Keyword: Solar thermal simulator

Search Result 38, Processing Time 0.02 seconds

Optical Characterization of a High-Flux Solar Thermal Simulator (고집광 태양열 시뮬레이터의 광학 특성 평가)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Yoon, Hwan-Ki;Kim, Jong-Kyu;Kang, Yong-Heack;Lee, Sung-Wook
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.65-71
    • /
    • 2015
  • A solar thermal simulator is suitable for indoor experiments of solar receivers and reactors when solar insolation and weather conditions are not favorable. Moreover, due to the easy control of electric power input, the solar thermal simulator allows the adjustment of power input incident on solar receivers and reactors and thus the implementation of accurate experiments. We manufactured a solar simulator, which is comprised of three sets of a xenon lamp and an elliptical reflector. In order to serve as a test facility, optical characterization of the solar simulator via radiation heat flux measurement is a critical prerequisite. We applied the flux mapping method to measuring the heat flux distribution of the three lamps. We presented the measurement results in terms of the heat flux distribution, the peak heat flux, the power distribution, the maximum power, and the efficiency for electric power conversion into radiation power. Characterization results show that our solar simulator provides the peak heat flux of $3,019kW/m^2$, the maximum power of 16.9 kW, and the conversion efficiency of 45%, additionally with a 10% operation margin for output increase.

One-time measurement of irradiation intensity of Solar Simulator using cds photo-sensors (cds 광전소자(光電素子)를 이용한 인공태양(人工太陽) 일사강도(日射强度)의 동시측정(同時測定))

  • Bai, K.;Cho, S.H.;Lee, N.H.;Auh, P.C.M.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.28-34
    • /
    • 1985
  • There are two kinds of irradiation intensity deviation, depending on time and position, on illuminated plane when thermal performance of solar collector is tested by using solar simulator. In this study we measured only position deviation of irradiation intensity using 45-cds photosensors and data acqusition system and found the point of average value. By this result we can improve the accuracy of irradiation measurement in indoor test of solar collector.

  • PDF

The Fundamental Researches to Evaluate PVT Module Performance (PVT 모듈 성능 평가를 위한 기초 연구)

  • Kim, Pilkyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • PVT modules commonly can be defined as a combination of PV modules and thermal collectors. After absorbing sun light, electricity and hot water can be actually provided to users simultaneously, which dual outputs (electricity and hot water) have drawn academic interest and industrial activities. Additionally, heat exchange between solar cell and flowing water can enhance solar cell efficiency. Because of PVT modules effectiveness, new international markets and commercial products have made. Especially European, facilities and measurement methods are established to evaluate PVT module performance. However, there are no currently appropriate internationally and domestic standards and facilities to test PVT module performance Herein, to test PVT module performance, indoor thermal simulators and fundamental standard study are considered.

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle using CeO2/ZrO2 Foam Device (CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • Two-step water splitting thermochemical cycle with $CeO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2$ foam device depending on reaction temperature of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. As a result, the amount of reduced $CeO_2$ considerably varies according to the reaction temperature of Thermal-Reduction step. and hydrogen production was not much when the amount of reduced $CeO_2$ decreased even if the reaction temperature of Water-Decomposition step was high. Therefore, it is very important to keep the reaction temperature of Thermal-Reduction step high in two-step thermochemical cycle with $CeO_2$.

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle Using Dual-zone Reactor and CeO2/ZrO2 Foam Device (Dual-zone reactor와 CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.27-37
    • /
    • 2017
  • In this study, an artificial solar simulator composed of a 2.5 kW Xe-Arc lamp and mirror reflector was used to carry out the solar thermal two step thermochemical water decomposition cycle which can produce high efficiency continuous hydrogen production. Through various operating conditions, the change of hydrogen production due to the possibility of a dual-zone reactor and heat recovery were experimentally analyzed. Based on the reaction temperature of Thermal-Reduction step and Water-Decomposition step at $1,400^{\circ}C$ and $1,000^{\circ}C$ respectively, the hydrogen production decreased by 23.2% under the power off condition, and as a result of experiments using heat recovery technology, the hydrogen production increased by 33.8%. Therefore, when a thermochemical two-step water decomposition cycle is conducted using a dual-zone reactor with heat recovery, it is expected that the cycle can be operated twice over a certain period of time and the hydrogen production amount is increased by at least 53.5% compared to a single reactor.

A Study on Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle by Heat Recovery (열회수에 따른 고온 태양열 열화학 싸이클의 수소 생산에 관한 연구)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.13-22
    • /
    • 2017
  • Two-step water splitting thermochemical cycle with $CeO_2/ZrO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2/ZrO_2$ foam device depending on heat recovery of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2/ZrO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. Resultantly, the quantity of hydrogen generation increased by 52.02% when the carrier gas of Thermal-Reduction step is preheated to $200^{\circ}C$ and, when the $N_2/steam$ is preheated to $200^{\circ}C$ in the Water-Decomposition step, the quantity of hydrogen generation increased by 35.85%. Therefore, it is important to retrieve the heat from the highly heated gases discharged from each of the reaction spaces in order to increase the reaction temperature of each of the stages and thereby increasing the quantity of hydrogen generated through this.

A Thermal Flow Analysis for an Optimal shape of Solar Lamp Bank (최적의 램프뱅크형태를 결정하기 위한 열유동 해석)

  • Baek, Sang-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.82-89
    • /
    • 2012
  • This study is on the thermal flow analysis to select an optimal shape of solar lamp bank. Solar Lamp bank is designed by the lamp bank design program based on point light source theory. The reliability of the program for lamp bank design is verified through irradiance variation experiments of a kind of lamp according to horizontal distance. Solar lamp bank facilitates heat distribution and satisfies the irradiance in the three wave length which test guidelines require. Among the 4 kinds of lamp bank, since lamp bank type D satisfies uniformity ${\pm}10%$ and also doesn't exceed total irradiance 1,232 $W/m^2$, type D is finally selected.

Study on the application of a realtime simulator to the development of a controller for a space thermal environment chamber (실시간 플랜트 시뮬레이터를 이용한 우주 열환경 챔버 제어기 개발에 관한 연구)

  • Jung, Mu-Jin;Shin, Young-Gy;Choi, Seok-Weon;Moon, Guee-Won;Seo, Hee-Jun;Lee, Sang-Hoon;Cho, Hyok-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.216-221
    • /
    • 2003
  • A thermal vacuum chamber is mainly used to simulate thermal environments of a test satellite in satellite orbits in which daily temperature variations range from 80K to above 400K depending on solar radiation under the vacuum below $10^{-4}$ torr. The test facility is quite complex and consists of expensive parts. So any modification of control software is discouraged in fear of unexpected system failure. The purpose of this study is to develop a realtime dynamics model of the thermal vacuum chamber in view of controller design and simulate its electrical inputs and outputs for interface with a PLC (programmable logic controller). A PLC program that was used in the thermal vacuum chamber is applied to the realtime simulator. The realized simulator dynamics is found to be quite similar to that of the thermal vacuum chamber and serve to an appropriate plant to verify the control performance of a programmed PLC.

  • PDF

Development and application of an assessment tool for outdoor thermal environment (옥외 온열환경 평가를 위한 복사 연성 CFD 해석기법의 개요)

  • Lim, Jong-Yeon;Chang, Hyun-Jae;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.45-55
    • /
    • 2009
  • Deterioration of the outdoor thermal environment in urban areas has become worse and worse due to the urbanization and overpopulation, etc. Most of existing researches about thermal environment are focused on the indoor environment in which the radiation heat exchange is relatively constant. However, the outdoor thermal environment is changed with time passages, because the thermal environment is highly effected by solar radiation. Thus, to simulate the outdoor thermal environment with accuracy, the solar radiation calculation should be considered, and the radiation heat exchange between building surface and ground surface should be calculated. The purpose of this study is to develop the simulator that can be possible to evaluate the outdoor thermal environment and pedestrian thermal comfort. In this paper, a new method which is coupled with convective heat transfer simulation and radiative heat transfer simulation will be proposed. And the coupled simulation method will be described through case study for outdoor thermal environment. From the results of simulation, the coupled simulation proposed in this study can assess the outdoor thermal environment with accuracy.

A Study on Numerical Analysis of Thermal Flow in Solar Lamp Bank (솔라 램프뱅크 내의 열유동 수치해석에 관한 연구)

  • Kim, Sung-Dae;Ryoo, Seong-Ryoul;Baek, Sang-Hwa;Lee, Jeong-Yong;Park, So-Jin;Kim, Chul-Ju;Ko, Han-Seo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.136-143
    • /
    • 2008
  • A three-wavelength solar bank is a very important part for a solar simulator with commercial superlux lamps. It is projected metal halide lamps to satisfy following points simultaneously: $\pm$10% of uniformity for irradiance of target area and irradiance in each wave region, and $1,232W/m^2$ of maximum solar irradiance in summer. The developed solar lamp bank has been analyzed numerically by commercial programs in this study to carry out experiments. In conclusion, designed B-type heat lamp is not concentrated in one place than designed A-type heat lamp, it is spreaded widely, and it was proved numerical computation. We suggest that solar simulator is applied to actual experiment test through heat flow numerical analysis in solar lamp bank and the lamp is applied private industry or the military using complex environmental assessment test.