• 제목/요약/키워드: Solar thermal power generation

검색결과 84건 처리시간 0.024초

옥외 설치된 비정질 실리콘 박막태양전지모듈의 전기적 출력 특성 분석 (Analysis of Electrical Characteristics of Amorphous Silicon Thin Film Photovoltaic Module Exposed Outdoor)

  • 김경수;강기환;유권종
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.62-67
    • /
    • 2008
  • In this study, we analyze the electrical characteristics of amorphous silicon thin film photovoltaic module which are installed about 5 years ago. Four modules from PV system are extracted and measured the maximum power change ratio using solar simulator(Class A). Also, infrared camera is used to get thermal distribution characteristics of system. The external appearance change is compared with initial module by naked eye examination. Through this experiment, 31% maximum output power drop is observed. The detail description is specified as the following paper.

커튼월 스팬드럴 적용을 위한 CIGS 박막 모듈의 특성 분석 연구 (The Characteristics on CIGS Thin Film PV Module for Curtain Wall Spandrel Applications)

  • 강준구;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.107-113
    • /
    • 2013
  • In this study, three different types of experimental models of BIPV curtain wall units with GIGS modules were built, and their thermal and electrical performances were analyzed. The experimental results showed that the temperature of the rear side of the GIGS module with the application of an insulation in the curtain wall spandrels was higher than a GIGS module standalone by $22^{\circ}C$, which results in a reduction in the power generation of the former by 8 %. On the other hand, when ventilation was applied to the model to improve the power generation performance, the module temperature was observed to be $142^{\circ}C$ lower compared to the enclosed type, and the power generation performance improved by 5 %. It confirmed that the temperature increase in the rear side of the GIGS module with insulation layer reduced the electrical performance of the module. Based on this, it is claimed that providing sufficient ventilation at the GIGS applied spandrels contribute to improve the power generation of the GIGS module.

냉난방부하 절감을 위한 경사형 이중외피시스템의 성능연구 (A study on the efficiency of sloped type Double-skin System for the Curtailment of Heating/Cooling Load)

  • 안형준;김영탁;최창호;이현우
    • 한국태양에너지학회 논문집
    • /
    • 제24권4호
    • /
    • pp.77-87
    • /
    • 2004
  • BIPV or double skin applied to the surface of the building, power and thermal load cannot both be increased. In the case of BIPV, because it is applied to the facade, incident solar energy decreases and efficiency drops off. The system in this paper complements these disadvantages and aims to decrease the heating & cooling load by transforming solar energy to electronic and thermal energy. The research in this paper is about the applicability of the clear PV attached double-skin system. And the PV electronic generation and the factors that affect the heating & cooling load such as the daily radiation, sun shading ratio, heating & cooling load, daylight luminance and glare distributions in the building are simulated.

공기식 집열 지붕 난방시스템의 실험 연구 (An Experimental Study of Solar fir Roof Heating System With PVT Collector)

  • 강준구;김진희;김준태
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.232-237
    • /
    • 2008
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The extraction of hot air from the space will enhance the performance of BIPV systems. The solar collector utilizing these two aspects is called PV/T(photovoltaic/thermal) solar collector. This research is about the development of solar roof system with PV/T collector to apply into buildings. A test cell experiment was performed with the PVT roof installed: It found that the hot air supply from the PVT air collector contributed to increase the heating efficiency by 2 times and the electrical efficiency by about 8%.

  • PDF

120 kW급 태양광 발전시스템 설치 및 실 계통연계 운전 결과 평가 (Test Results Grid Connection of 120 kW Power Generation System)

  • 황정희;안교상;임희천;김수창;김신섭
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.338-346
    • /
    • 2006
  • In this paper, the test results of medium-size(120 kW class) PV system which was installed in the Taeahn thermal power station of Korea Western Power Co., Ltd., were summarized for developing the practical technology to applicate high voltage grid connection PV system. The 120 kW photovoltaic system which was consisted of 1,300 modules, PCS, and 150 kVA transformer station has been operated since Aug. 05, 2005. For verifying the modeling results of PV system, the operation data was compared with modeling results which was executed commercial PSCAD/EMTD and Psim tools. An equivalent circuit model of a solar cell has been also used for solar array modeling. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter(VIS) and its current control scheme have been analyzed by using P&O (perturbation and Observation) MPPT algorithms technique.

열전소자를 활용한 도로구조물에서의 에너지 하베스팅 기초 연구 (Fundamental Study of Energy Harvesting using Thermoelectric Module on Road Facilities)

  • 이재준;김대훈;이강휘;임재규;이승태
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : An conventional method for electric power generation is converting thermal energy into mechanical energy then to electrical energy. Due to environmental issues such as global warming related with $CO_2$ emission etc., were the limiting factor for the energy resources which resulting in extensive research and novel technologies are required to generate electric power. Thermal energy harvesting using thermoelectric generator is one of energy harvesting technologies due to diverse advantages for new green technology. This paper presents a possibility of application of the thermoelectric generator's application in the direct exchange of waste solar energy into electrical power in road space. METHODS : To measure generated electric power of the thermoelectric generator, data logger was adopted as function of experimental factors such as using cooling sink, connection methods etc. Also, the thermoelectric generator、s behavior at low ambient temperature was investigated as measurement of output voltage vs. elapsed times. RESULTS : A few temperature difference between top an bottom of the thermoelectric generator is generated electric voltage. Components of an electrical circuit can be connected in various ways. The two simplest of these are called series and parallel and occur so open. Series shows slightly better performance in this study. An installation of cooling sink in the thermoelectric generator system was enhanced the output of power voltage. CONCLUSIONS : In this paper, a basic concepts of thermoelectric power generation is presented and applications of the thermoelectric generator to waste solar energy in road is estimated for green energy harvesting technology. The possibility of usage of thermoelectric technology for road facilities was found under the ambient thermal gradient between two surfaces of the thermoelectric module. An experiment results provide a testimony of the feasibility of the proposed environmental energy harvesting technology on the road facilities.

환기 유무에 따른 CIGS BIPV 커튼월 유닛의 성능 비교 분석 (Comparison of Performance Analysis of the Ventilated and Non-­ventilated CIGS BIPV Units)

  • 김상명;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제37권2호
    • /
    • pp.47-57
    • /
    • 2017
  • CIGS thin film solar cells are technically suitable for BIPV applications than regularly used crystalline silicon solar cells. Particularly, CIGS PV has lower temperature coefficient than crystalline silicon PV, thus decrease in power generation is lowered in CIGS PV. Moreover, CIGS PV can decrease shading loss when applied to the BIPV system, and the total annual power generation is higher than crystalline silicon. However, there are few studies on the installation factors affecting the performance of BIPV system with CIGS module. In this study, BIPV curtain wall unit with CIGS PV module was designed. To prevent increase of temperature of CIGS PV module by solar radiation, ventilation was considered at the backside of the unit. The thermal specification and electrical performance of CIGS PV of the ventilated unit was analyzed experimentally. Non-ventilated unit was also investigated and compared with ventilated unit. The results showed that the average CIGS temperature of the ventilated curtain wall unit was $6.8^{\circ}C$ lower than non-ventilated type and the efficiency and power generation performance of ventilated CIGS PV on average was, respectively, about 6% and 5.8% higher than the non-ventilated type.

국내 고집광 태양에너지 발전단지 건설을 위한 법선면 직달일사량 자원조사 (A Survey of Direct Normal Insolation Resources for the Construction of Solar Concentrating Power Generation Sites in Korea)

  • 조덕기;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.209-214
    • /
    • 2008
  • Since the direct normal insolation is a main factor for designing any solar thermal power system, it is necessary to evaluate its characteristics all over the country. We have begun collecting direct normal insolation data since December 1992 at 16 different locations and considerable effort has been made for constructing a standard value from measured data at each station. KIER(Korea Institute of Energy Research)'s new data will be extensively used by solar thermal concentrating system users or designers as well as by research institutes. From the results, we can conclude that 1) Yearly mean 2.67 kWh/$m^2$/day of the direct normal insolation was evaluated for all days all over the 16 areas in Korea. 2) All day's direct normal insolation of spring and summer were 2.91 kWh/$m^2$/day and 2.23 kWh/$m^2$/day, and for fall and winter their values were 2.78 kWh/$m^2$/day and 2.77 kWh/$m^2$/day respectively. So, spring, fall and winter were higher, and summer was lower than the yearly mean value

  • PDF

후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구 (Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside)

  • 윤종호;김재웅
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.

Comparative Analysis of a Competitive Technology for Major Future Energy Resources

  • Koo Young-Duk;Kim Eun-Sun;Park Young-Seo
    • Journal of information and communication convergence engineering
    • /
    • 제3권2호
    • /
    • pp.101-104
    • /
    • 2005
  • Recently advanced countries are making every effort to promote the efficiency of electric power production and supply, to deal with the environmental problems, and to develop the new energy. In particular, they are driving forward to develop various technologies for electric power in mid-long term, that are technology for building infrastructure of power transportation, establishing service network for account management using electronic technologies, elevating economic productivity by innovative electronic technologies, control-ling the discharge of global warming gas, using clean efficient energy, and so forth. However, power technology of Korea lagged behind than technology of advanced countries. Also, resources for developing power technology are limited in our country. Therefore, it is necessary to improve the efficiency of R&D investment. For it, our country must compare and analyze with technologies of advanced countries which are taking competitive advantage in the main future energy. Through comparative analysis, limited R&D resources of our country must be concentrated on technologies that can secure competitive advantage from now on.