• Title/Summary/Keyword: Solar sail propulsion system

Search Result 3, Processing Time 0.017 seconds

Technological Trends in Space Solar Sails (우주태양광 비행선의 기술 동향)

  • Yoon, Yong-Sik;Choi, Jung-Su;Kim, Hyung-Wan
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • Space solar sails are a form of spacecraft propulsion using the radiation pressure of light from a star or laser to push enormous ultra-thin mirrors to high speeds. With respect to it, U.S.A, Japan, E.U. and Russia, etc. have performed a substantial research and the space flight test. On May 2010, JAXA succeeded in launching the world's first interplanetary solar sail spacecraft "IKAROS" to Venus. Currently, solar sail propulsion is aimed chiefly at accomplishing a number of non-crewed missions in any part of the solar system and beyond. This paper presents the technology trend of advanced countries on the development of the solar sails as a new propulsion method for the space investigation and travel.

  • PDF

Research Status of Sail Propulsion using the Solar Wind

  • Funaki, Ikkoh;Yamakawa, Hiroshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.583-588
    • /
    • 2008
  • A spacecraft propulsion system utilizing the energy of the solar wind was reviewed. The first plasma sail concept was proposed by Prof. Winglee in 2000, and that was called M2P2(mini-magnetospheric plasmapropulsion). However, the first M2P2 design adopting a small(20-cm-diamter) coil and a small helicon plasma source design was criticized by Dr. Khazanov in 2003. He insisted that: 1) MHD is not an appropriate approximation to describe the M2P2 design by Winglee, and with ion kinetic simulation, it was shown that the M2P2 design could provide only negligible thrust; 2) considerably larger sails(than that Winglee proposed) would be required to tap the energy of the solar wind. We started our plasma ssail study in 2003, and it is shown that moderately sized magnetic sails can produce sub-Newton-class thrust in the ion inertial scale(${\sim}70$ km). Currently, we are continuing our efforts to make a feasibly sized plasma sail(Magnetoplasma sail) by optimizing the magnetic field inflation process Winglee proposed.

  • PDF

Performance Evaluation of 20 HP Outboard Motor in Consideration of Driving System Applied to Electric-Propulsion Boat (전기추진 선박에 적용되는 20HP급 전기추진 선외기 구동시스템의 성능평가에 대한 고찰)

  • Moon, Byung Young;Shin, Kuk Hwan;Lee, Ki Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.518-526
    • /
    • 2018
  • As a new technical approach, this paper introduces a method for improving an electrically propelled outboard motor in consideration of the driving system applied to an electric-propulsion boat with solar cell energy. The most efficient model for a drive shaft, propeller shaft, and bevel gear was suggested and examined with respect to the results of test operation in prototype mode. Furthermore, this research included a performance evaluation of the manufactured prototype to acquire the purposed quantity value and the development items. After manufacturing the desired prototype of an electrically propelled outboard motor, the maximum sail time, thrust force, noise, and weight were evaluated in a performance test. An additional test in relation to the maximum sail speed (knots) of the completed prototype was conducted using a sea trial evaluation to acquire the optimum quantity.