• Title/Summary/Keyword: Solar panel efficiency

Search Result 89, Processing Time 0.028 seconds

A Study on the Optimal Voltage for MPPT Obtained by only Surface's Temperature of Solar Cell (태양전지 온도 센싱만을 통한 태양광 발전시스템의 최적 운전전압에 관한 연구)

  • Minwon Park;In-Keun Yi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Photovoltaic(PV) system has been studied and watched with keen interest due to a clean and renewable power source. But, the output power of PV system is not only unstable but uncontrollable, because the maximum power point tracking (MPPT) of PV system is still hard with the tracking failure under the sudden fluctuation of irradiance. Authors suggest that the optimal voltage for MPPT be obtained by only solar cell temperature. Having an eye on that the optimal voltage point of solar cell is in proportion to its panel temperature, with operating the power converter whose operating point keeps its input voltage to the optimal voltage imagined by the surface's temperature of PV panel, the maximum power point becomes tenderly possible to be tracked. In order to confirm the availability of the proposed control scheme. And both control methods are simulated not only on the various angle of sampling time of switching control, but also with the real field weather condition. As the results of that, the conversion efficiency between PV panel and converter of the proposed control scheme was much better than that of the power comparison MPPT control, and what is better, the output voltage of PV panel was extremely in stable when the optimal voltage for MPPT is obtained by only solar cell temperature.

Study on Generation Volume of Floating Solar Power Using Historical Insolation Data (과거 일사량 자료를 활용한 수상태양광 발전량 예측 연구)

  • Na, Hyeji;Kim, Kyeongseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.249-258
    • /
    • 2023
  • Solar power has the largest proportion of power generation and facility capacity among renewable energy in South Korea. Floating solar power plant is a new way to resolve weakness of land solar power plant. This study analyzes the power generation of the 18.7 MW floating solar power project located in Saemangeum, Gunsan-si. Since the solar power generation has a characteristic that is greatly affected by the climate, various methods have been applied to predict solar power generation. In general, variables necessary for predicting power generation are solar insolation on inclined surfaces, solar generation efficiency, and panel installation area. This study analyzed solar power generation using the monthly solar insolation data from the KMA (Korea Meteorological Administration) over the past 10 years. Monte Carlo simulation (MCS) was applied to predict the solar power generation with the variables including solar panel efficiency and insolation. In the case of Saemangeum solar power project, the most solar power generation was in May, the least was in December, the average solar power generation simulated on MCS is 2.1 GWh per month, the minimum monthly power generation is 0.3 GWh, and the maximum is 5.0 GWh.

A Study on Solar Radiation and Efficient Solar Panel of Icosahedron-based Hemispherical Dome (정20면체기반 반구형 돔의 일사량과 효율적인 솔라패널에 관한 연구)

  • Shon, Su-Deok;Lee, Don-Woo;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • Solar power is being spotlighted recently as a new energy source due to environmental problems and applications of solar power to curved structures are increasing. Solar panels installed on curved surfaces have different efficiencies depending on its position and the efficient positioning of solar panels plays a critical role in the design of solar power generation systems. In this study, the changing characteristics of solar irradiance were analyzed for hemispherical dome with a large curvature and the positioning of solar panels that can efficiently utilize solar energy was investigated. With an icosahedron-based hemispherical dome consisting of triangular elements as target model, a program for calculating solar irradiance using a normal vector of the solar module on each face was developed. Furthermore, the change of solar irradiance according to the sun's path was analyzed by time and season, and its effects on shades were also examined. From the analysis results, the effective positioning could be determined on the basis of the efficiency of the solar panels installed on the dome surfaces on solar irradiance.

Power Generation Change According to Angle Control of Solar Power Plant Panel (태양광 발전 패널 각도 제어에 따른 발전량 변화)

  • Han, Myung-Hee;Woo, Je-Teak;Lee, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.685-692
    • /
    • 2019
  • In this paper, the relationship between the angle control of the panel contributing to the optimum power generation efficiency of the solar power plant is investigated. For a total of eight months, one of the two plants with the same equipment configuration changed their angles every three months and the other plants did not change their angle. In this study, we propose a model that can maximize the power generation efficiency by comparing and analyzing the difference of power generation between stationary solar power station and stationary solar power station through simulation.

Density and Strength Properties according to the Paper Ash addition ratio of the Lightweight Composite Panel Core Using the Blast Furnace Slag and Polysilicon Sludge (고로슬래그와 폴리실리콘 슬러지를 활용한 경량복합패널 심재의 제지애시 첨가율에 따른 밀도 및 강도특성)

  • Lim, Jeong-Geun;Lee, Ji-Hwan;Park, Hee-Gon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.152-153
    • /
    • 2015
  • Recently, solar energy generation is one of the fastest growing industries for eco-friendly energy. Every year, solar energy generation industry grows to 42% on average. However, polysilicon sludge is generated from processing of polysilicon but, there is nothing to handle that. Therefore, we need research to recycle polysilicon sludge. Also, improved fire resistance efficiency of wall is required according to reinforced fire safety standards due to many cases of big fires in our country. This study focuses on density and strength properties according to the addition ratio of paper Ash for the lightweight composite panel core with polysilicon sludge. As a result of the test, adding paper ash 9% has the best density and strength properties.

  • PDF

A study on the efficiency of ESS installed in a small solar power plant based on actual data (실측데이터 기반 소규모 태양광발전소 연계용 ESS 효율 분석에 관한 연구)

  • Youn, Geum-Ran;Lee, Tae-kyu;Kim, Jeong-Uk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.350-357
    • /
    • 2019
  • We analyzed the system efficiency of small solar power plants with 80% of total solar power plants. The data of the solar power plant with installed capacity of 100kW was collected and the correlation of the ESS efficiency according to the capacity of the PCS and the battery of each power plant was deduced. As a result, the higher the C-rate value affecting the discharge rate of the battery, The discharge efficiency of the plasma display panel is increased.

A Study on non-linear trajectory shaped apparatus applied solar tracking device (비선형 궤적형상을 적용한 태양광 추적장치에 대한 연구)

  • Han, Jae-Hyeon;Moon, Chae-Joo;Chang, Young-Hak;Choi, Man-Soo;Kim, Young-Gon;Jeong, Moon-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1277-1284
    • /
    • 2015
  • In this paper, 1-axis tracking mechanism of solar-cell panel, which is able to rotate from -90 degree to +90 degree for maintaining always perpendicular between solar-cell panel and sun, was analyzed. This paper propose the non-linear shaped guidance and analyze mathematical formulation of non-linear shape. This analysis shows that it is able to identify the non-linear shaped guidance. Especially, even though the length of rotating link have changed, the non-linear shaped guidance could be confirm with proper size. As effectiveness of this result, 10% efficiency rising is estimated compared to the conventional 1-axis tracking mechanism and also optimal non-linear shaped guidance can be suggested for various size of solar-cell panel. Therefore the flexible mass-production is possible for various size of non-linear shaped guidance.

A Design of the Solar Tracker for LED Streetlight in Using Solar Cell (태양전지를 이용한 LED 가로등의 태양광 추적 장치 설계)

  • Lee, Ok-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.1-9
    • /
    • 2013
  • A standalone LED lighting system in using solar energy has been used usually less than 70W of lighting power because of a troublesome installation and maintenance. In this system, as more and more LED lighting power increases, the capacity of photovoltaic panel does proportionally, and to improve the charging efficiency of solar energy, MPPT(Maximum Power Point Tracking) techniques is used frequently, but the solar tracker is not. In this paper, a solar tracker which traces the light of the sun in varying hour to hour is studied to apply to the standalone LED lighting system. This solar tracker consists of twin axis for tracing the azimuth and altitude respectively, and it has a robust structure with safe mode to stand a strong wind. As a result of analysis, generating efficiency of the traced type has improved on the fixed one 28.84% on average.

The Performance Evaluation Study of PV-Solarwall Unit Module Solar Thermal-Electric Energy (태양에너지를 이용한 열-전기 동시생산을 위한 PV-Solarwall 단위모듈 성능평가 연구)

  • Kim, Yong-Hwan;Cho, Yil-Sik;Lee, Euy-Joon;Hyun, Myung-Taek;Kang, Eun-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.69-75
    • /
    • 2005
  • The PV-Solarwall system has been introduced as a promising alternative to harness solar energy for both heating applications and electricity generation simultaneously. The system comprises a PV solar panel(for electricity generation). In addition, the solarwall incorporates a fan strategically located behind the PV panel to bring the warm and fresh air from the solarwall into the room. Because of its location and convective cooling principle, the fan also serves to reduce the operating temperature of the PV panel thereby increasing its efficiency. So this PV-Solarwall system holds much promise for saving heating and electricity costs compared with a PV system without solarwall. In particular, by controlling the tilt angle of the entire PV-Solarwall system between $0^{\circ}$(horizontal) and $90^{\circ}$(vertical), the performance of the system can be further evaluated. It is expected that the range of tilt angle PV-Solarwall between $40^{\circ}$ and $50^{\circ}$ will improve the output of the system.

A Study on a Two-Axis Solar Tracking System Based on Fuzzy Logic Control (퍼지 논리 제어를 기반으로 한 2축 태양광 추적시스템에 관한 연구)

  • Ahn, Byeongwon;Lee, Hui-Bae;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.531-537
    • /
    • 2015
  • In order to maximize power output from the solar panels, one needs to keep the panels aligned with the sun. So solar tracker having high reliability must be designed. This paper cares about the design and evaluation of a two-axis solar tracker system based on fuzzy logic control with LabVIEW. The research focus on planning mechanical parts, making an intelligent controller which controls and monitors all parameters via user interface implemented of a fuzzy decision support system for control of photovoltaic panel movement. We also develop a real solar tracker system and analyze the influence indexes such as environment, weather, season, and light condition. The solar tracker is tested in real condition and all parameters related to the system operation are recorded and analyzed. The developed solar tracking system got a much higher efficiency about 38 % compare to fixed solar panel although the weather condition is affected a lot to the solar panel. So we confirmed the our auto tracking system is more effective and can allow more energy to be produced.