• Title/Summary/Keyword: Solar magnetic field

Search Result 249, Processing Time 0.024 seconds

Development of Ballooning Instabilities in the Solar Atmosphere

  • Jun, Hong-Dal;Choe, G.S.;Kim, Sun-Jung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.84.2-84.2
    • /
    • 2011
  • A numerical simulation study of the solar coronal plasma reveals that a ballooning instability can develop in the course of flux rope merging. When magnetic field lines from different flux ropes reconnect, a new field line connecting farther footpoints is generated. Since the field line length abruptly increases, the field line expands outward. If the plasma beta is low, this expansion takes place more or less evenly over the whole field line. If, on the other hand, the plasma beta is high enough somewhere in this field line, the outward expansion is not even, but is localized as in a bulging balloon. This ballooning section of the magnetic field penetrates out of the overlying field, and eventually the originally underlying field and the overlying field come to interchange their apex positions. This process may explain how a field structure that has stably been confined by an overlying field can occasionally show a localized eruptive behavior.

  • PDF

NONPOTENTIAL PARAMETERS OF SOLAR ACTIVE REGION AR 5747

  • MOON Y.-J.;YUN H. S.;CHOE GWANGSON;PARK Y. D.;MICKEY D. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • Nonpotential characteristics of magnetic fields in AR 5747 are examined using Mees Solar Observatory magnetograms taken on Oct. 20, 1989 to Oct. 22, 1989. The active region showed such violent flaring activities during the observational span that strong X-ray flares took place including a 2B/X3 flare. The magnetogram data were obtained by the Haleakala Stokes Polarimeter which provides simultaneous Stokes profiles of the Fe I doublet 6301.5 and 6302.5. A nonlinear least square method was adopted to derive the magnetic field vectors from the observed Stokes profiles and a multi-step ambiguity solution method was employed to resolve the $180^{\circ}$ ambiguity. From the ambiguity-resolved vector magnetograms, we have derived a set of physical quantities characterizing the field configuration, which are magnetic flux, vertical current density, magnetic shear angle, angular shear, magnetic free energy density, a measure of magnetic field discontinuity MAD and linear force-free coefficient. Our results show that (1) magnetic nonpotentiality is concentrated near the inversion line in the flaring sites, (2) all the physical parameters decreased with time, which may imply that the active region was in a relaxation stage of its evolution, (3) 2-D MAD has similar patterns with other nonpotential parameters, demonstrating that it can be utilized as an useful parameter of flare producing active region, and (4) the linear force-free coefficient could be a evolutionary indicator with a merit as a global nonpotential parameter.

  • PDF

SUNRISE: The Mission and Selected Science Results

  • Solanki, Sami K.;the Sunrise Team, the Sunrise Team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.85.1-85.1
    • /
    • 2011
  • The magnetic field at the surface of the Sun is concentrated in magnetic features that often have spatial extents of 100 km or less. The study of the fine scale structure of the Sun's magnetic field has been hampered by the limited spatial resolution of the available observations. This has recently changed thanks to various new high-resolution facilities, among them the SUNRISE observatory, built around the largest solar telescope to leave the ground, and containing two science instruments. SUNRISE successfully had its first long-duration science flight on a stratospheric balloon in June 2009 and a host of scientific results have been obtained from the data. After a brief introduction to the Sunrise mission, an overview of selected results obtained so far will be given. A reflight at higher solar activity is currently being prepared.

  • PDF

Magnetotail responses to sudden and quasi-periodic solar wind variations

  • Kim, Khan-Hyuk;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.33-33
    • /
    • 2003
  • A clear bipolar (negative/positive) signature in the Ey component was observed by the Cluster satellite in the magnetotail during a sudden impulse (si) on October 11, 2001 (day 284). During the interval of the negative perturbation in Ey, the magnetic field strength in Bx, a dominant magnetic field component, was nearly constant. However, the amplitude of Bx was strongly enhanced during the positive Ey perturbation. We suggest that the observed E and B field variations are due to outward/inward plasma motions, associated with expanded and then compressed magnetopause variations. We also observed quasi-periodic geomagnetic perturbations in the Pc5 band (∼1-6 mHz) at the low-latitude ground station Kakioka (L = 1.25) following the si event. They were highly correlated with the magnetic field perturbations at Cluster in the magnetotail (Xgse = ∼12 Re). We show that the source of these perturbations is the quasi-periodic solar wind pressure variations moving tailward.

  • PDF

Numerical Study of Inflation of a Dipolar Magnetic Field by Injecting Plasma with Different Beta

  • Kajimura, Yoshihiro;Funaki, Ikkoh;Shinohara, Iku;Usui, Hideyuki;Nakashima, Hideki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.553-556
    • /
    • 2008
  • A Magneto Plasma Sail(MPS) produces propulsive force by the interaction between the solar wind and an artificial magnetic field inflated by injecting plasma. Using a 2D hybrid PIC code, we evaluate the inflation of magnetic field when Argon(Ar) plasma with different ${\beta}_{in}$ including the value less than one is injected into the dipolar magnetic field generated by a superconducting coil. It is found that the magnetic field can be inflated by injecting plasma within an angle of $30^{\circ}$ in the polar direction and the magnetic field decays in the polar direction according to $B{\propto}r^{-2.4}$ after the plasma(${\beta}_{in}$=0.1) is injected.

  • PDF

Global MHD Simulation of the Earth's Magnetosphere Event on October, 1999

  • PARK KYUNG SUN;OGINO TATSUKI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.317-319
    • /
    • 2001
  • The response of the earth's magnetosphere to the variation of the solar wind parameters and Interplanetary magnetic field (IMF) has been stud}ed by using a high-resolution, three-dimension magnetohydrodynamic (MHD) simulation when the WIND data of velocity Vx, plasma density, dynamic pressure, By and Bz every 1 minute were used as input. Large electrojet and magnetic storm which occurred on October 21 and 22 are reproduced in the simulation (fig. 1). We have studied the energy transfer and tail reconnect ion in association with geomagnetic storms.

  • PDF

Effect of a Magnetic Field on Electrical Conductivity of a Partially Ionized Plasma

  • Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.29-34
    • /
    • 1975
  • Solar electrical conductivity has been calculated, making use of Yun and Wyller's formulation. The computed results arc presented in a tabulated form as functions of temperature and pressure for given magnetic field strengths. The results of the calculation show that the magnetic field does not play any important role in characterizing the electrical conductivity of the ionized gas when the gas pressure is relatively high (e.g., $P{\geq}10^4\;dynes/cm^2$). However, when the gas pressure is low (e.g., $P{\leq}10\;dynes/cm^2$), the magnetic field becomes very effective even if its field strength is quite small (e.g., $B{\leq}0.01$ gauss). It is also found that, except for lower temperature region (e.g., $T{\leq}10^{4^{\circ}}K$), there is a certain linear relationship in a log- log graph between the pressure and the critical magnetic field strength, which is defined as a field strength capable of reducing the non-magnetic component of the electrical conductivity by 20%.

  • PDF

PRELIMINARY REPORT: DESIGN AND TEST RESULTS OF KSR-3 ROCKET MAGNETOMETERS

  • Kim, Hyo-Min;Jang, Min-Hwan;Lee, Dong-Hun;Ji, Jong-Hyun;Kim, Sun-Mi;Son, De-Rac;Hwang, Seung-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.317-328
    • /
    • 2000
  • The solar wind contributes to the formation of unique space environment called the Earth's magnetosphere by various interactions with the Earth's magnetic field. Thus the solar-terrestrial environment affects the Earth's magnetic field, which can be observed with an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control as well as the Earth's magnetic field measurements for the spacecraft purpose. In this paper, we present the preliminary design and test results of the two onboard magnetometers of KARI's (Korea Aerospace Research Institute) sounding rocket, KSR-3, which will be launched four times during the period of 2001-02. The KSR-3 magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer) for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer) for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector field with the IGRF (International Geomagnetic Reference Field). The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  • PDF

On the Association Between Sub-photospheric Flows and Photospheric Magnetic Fields of Solar Active Regions

  • Maurya, Ram Ajor;Chae, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.86.2-86.2
    • /
    • 2012
  • We present the study of association between sub-photospheric flow and photospheric magnetic fields of active regions respectively derived from the local helioseismology and observed magnetic fields. It is believed that the energetic transients, e.g., flares and CMES, are caused by changes in magnetic and velocity field topologies in solar atmosphere. These changes are essentially brought about by the magnetic fields that are rooted beneath the photosphere where they interact and get affected by sub-photospheric flows. Therefore, we expect the topology of sub-surface flows to be correlated with the observable topology of magnetic fields at the photosphere and higher layers. In order to examine the correlation, if any, we computed the near photospheric flows and photospheric magnetic fields using the Doppler velocity and magnetic fields observations, respectively, provided by the SDO/HMI. The high resolution Doppler observations from the HMI enabled us to compute the very high p-modes parameters which sample the sub-photosphere shallow near the photosphere. Furthermore, we compute the sub-photospheric flow topology parameters, e.g., vorticity, kinetic helicity, and photospheric magnetic field topology parameters, e.g., magnetic helicity, from the magnetic fields observations to compare their associations. We present the result of the analysis in the paper.

  • PDF

Problems in Identification of ICMEs and Magnetic Clouds

  • Marubashi, Katsuhide;Kim, Yeon-Han;Cho, Kyung-Suk;Park, Young-Deuk;Choi, Kyu-Cheol;Baek, Ji-Hye;Choi, Seong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.46.1-46.1
    • /
    • 2010
  • This work is a part of our project to establish a Website which provides a list of magnetic clouds (MCs) identified by WIND and ACE spacecraft. MCs are characterized by their magnetic fields that are well described by magnetic flux rope structures, whereas interplanetary coronal mass ejections (ICMEs) are interplanetary manifestations of coronal mass ejections (CMEs), usually identified by differences of plasma and magnetic field characteristics from those in the background solar wind. It is widely accepted that, while MCs are generally identified within ICMEs, the number of MCs are significantly lower than the number of ICMEs. In our effort to identify MCs, however, we have found that there was a big problem in identification method of MCs in previous works. Generally speaking, most of the previous surveys failed in identifying MCs which encounter the spacecraft at large distances from the MC axis, or near the surface of MC structures. In our survey, MCs are identified as the region of which magnetic fields are well described by appropriate flux rope models. Thus, we could selected over 45 MCs, in 1999 solar wind data for instance, while 33 ICMEs are listed in the Website of the ACE Science Center reported by Richardson and Cane.

  • PDF