• Title/Summary/Keyword: Solar magnetic field

Search Result 249, Processing Time 0.025 seconds

A Model Calculation of Solar Microwave Burst Structure

  • Choi, Yong-Seok
    • Bulletin of the Korean Space Science Society
    • /
    • 1995.04a
    • /
    • pp.21-21
    • /
    • 1995
  • The structures of 17GHz microwave burst for bipolar sunspots have investigated. which included the effects of the projected shapes of radio sources as they traverse across the solar disk using a magnetic loop employing a model of solenoid coils. An ensemble of high-energy electrons confined in the loop be assumed. The projected brightnesls distributions of gyrosynchrotron emission in x- and o-modes are computed and converted into total intensity and circular polarization difference at 17GHz for various heliocentric distances using numerical integration of the transfer equation along the line of sight. The results of computations at 17GHz for optical thin case will be presented. and the effects of the orientation of the loop will be discussed in detail, as well as the effect of size, position, Structure, and polarization of the emission. Also the results of the various physical P8lrameters such as the strength of magnetic field. high and low energy cut-off of accelerated electrons. spectral index and density of electrons will be preslmted. After comparing the results of model calculation with observations. we found that the observations can be well explained in terms of a loop model and its projection effect.effect.

  • PDF

Statistical studies of trough at middle latitudes observed by DMSP F15

  • Park, Sarah;Kil, Hyosub;Kim, Khan-Hyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.126.1-126.1
    • /
    • 2012
  • The middle-latitude ionization trough, the plasma density depletion in the subauroral region, has been extensively studied since its discovery in the 1960s. Our knowledge of the variability of the trough is mostly based on the observations in the northern hemisphere. Recently, the COSMIC observations enabled the investigation of the trough in both hemispheres at all local time. However, the investigation was limited to the period of the low solar activity. In this study, we investigate the variability of the trough location and morphology with local time, solar cycle, magnetic activity, and interplanetary magnetic field. For this purpose, we analyze the DMSP F15 data acquired during 2000-2010.

  • PDF

SUNSPOT EVOLUTION IN THE VICINITY OF A LARGE SOLAR FLARE IN AR 6891

  • ALMLEAKY Y. M.;MALAWI A. A.;BASURAH H. M.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.317-319
    • /
    • 1996
  • Utilizing a Calcium filter, a large two ribbon flare of an importance 2.5Xj31? was recorded at. King Abdul-Aziz University Solar Observatory (KAAUSO) at the 30th of October 1991. This chromosphenc flare observation, which is of special importance since it is rarely reported, was for a flare that occurred near the south west of the equator at the vicinity of a large sunspot group on an active region known as AR 6891. The observed foot points of this flare had a strange behavior in which the separating motion of the ribbons were not typical of most flares, rather were nearly orthogonal. In this article we present the characteristics of the main sunspot group of this active region and try to investigate its evolution and fragmentation with time. Information regarding magnetic fields and velocity fields are necessary to understand the restructuring of the magnetic field pattern and plasma motion, and hence the changes that could lead to the occurrence of such an interesting flare.

  • PDF

Development of a flux emergence simulation using parallel computing

  • Lee, Hwanhee;Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.71.1-71.1
    • /
    • 2019
  • The solar magnetic field comes from the solar interior and is related to various phenomena on the Sun. To understand this process, many studies have been conducted to produce its evolution using a single flux rope. In this study, we are interested in the emergence of two flux ropes and their evolution, which takes longer than the emergence of a single flux rope. To construct it, we develop a flux emergence simulation by applying a parallel computing to reduce a computation time in a wider domain. The original simulation code had been written in Fortran 77. We modify it to a version of Fortran 90 with Message Passing Interface (MPI). The results of the original and new simulation are compared on the NEC SX-Aurora TSUBASA which is a vector engine processor. The parallelized version is faster than running on a single core and it shows a possibility to handle large amounts of calculation. Based on this model, we can construct a complex flux emergence system, such as an evolution of two magnetic flux ropes.

  • PDF

Development of a Daily Solar Major Flare Occurrence Probability Model Based on Vector Parameters from SDO/HMI

  • Lim, Daye;Moon, Yong-Jae;Park, Jongyeob;Lee, Kangjin;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.59.5-60
    • /
    • 2017
  • We present the relationship between vector magnetic field parameters and solar major flare occurrence rate. Based on this, we are developing a forecast model of major flare (M and X-class) occurrence rate within a day using hourly vector magnetic field data of Space-weather HMI Active Region Patch (SHARP) from May 2010 to April 2017. In order to reduce the projection effect, we use SHARP data whose longitudes are within ${\pm}60$ degrees. We consider six SHARP magnetic parameters (the total unsigned current helicity, the total photospheric magnetic free energy density, the total unsigned vertical current, the absolute value of the net current helicity, the sum of the net current emanating from each polarity, and the total unsigned magnetic flux) with high F-scores as useful predictors of flaring activity from Bobra and Couvidat (2015). We have considered two cases. In case 1, we have divided the data into two sets separated in chronological order. 75% of the data before a given day are used for setting up a flare model and 25% of the data after that day are used for test. In case 2, the data are divided into two sets every year in order to reduce the solar cycle (SC) phase effect. All magnetic parameters are divided into 100 groups to estimate the corresponding flare occurrence rates. The flare identification is determined by using LMSAL flare locations, giving more numbers of flares than the NGDC flare list. Major results are as follows. First, major flare occurrence rates are well correlated with six magnetic parameters. Second, the occurrence rate ranges from 0.001 to 1 for M and X-class flares. Third, the logarithmic values of flaring rates are well approximated by two linear equations with different slopes: steeper one at lower values and lower one at higher values. Fourth, the sum of the net current emanating from each polarity gives the minimum RMS error between observed flare rates and predicted ones. Fifth, the RMS error for case 2, which is taken to reduce SC phase effect, are smaller than those for case 1.

  • PDF

SOLAR ACTIVITY AND SPACE ENVIRONMENT (태양활동과 우주환경)

  • YUN HONG SIK
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 1999
  • The Earth is exposed to constant outflow of the solar wind from the outer layers of the Sun, and violent transient events taking place from active regions increase the energy flux of both radiation and particles leaving the Sun. Thus the space surrounding the Earth is a highly dynamic environment that responds sensitively to changes in radiation, particles and magnetic field arriving from the Sun. Nowadays, it becomes increasingly important to understand how the physical system of Earth-space works and how the space around the Earth connects to interplanetary space. In the present paper we describe how explosive solar events, such as CME(Coronal Mass Ejection) and flares affect the Earth-space environment and how the space weather reacts to them. Practical consequences are presented to demonstrate why a broader view of Earth's environment is greatly needed to cope with modern day's inhabitation problem in a rapidly developing space age.

  • PDF

The inference of minimum temperature of the solar atmosphere from the FISS data

  • Moon, Byeongha;Chae, Jongchul;Kang, Juhyeong;Oh, Suyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.58.1-58.1
    • /
    • 2018
  • In the solar atmosphere, below the region of temperature minimum, temperature decreases with height and above it, temperature increases with height. Therefore the inference of temperature minimum is a basis of the study about the solar atmosphere and heating problem. The temperature of the temperature minimum region can be inferred from acoustic cutoff frequency. According to a recent study the acoustic cutoff frequency is related to the peak frequency of the power spectrum the chromospheric three-minute velocity oscillations. Using this relationship, we infer the temperature of temperature minimum. The three minute velocity oscillation and its power spectrum are obtained for a pore observed with the Fast Imaging Solar Spectrograph (FISS) $H{\alpha}$ band. We present the inferred temperature and compare it with the temperature of Maltby model. We also investigate the effect of the inclination of magnetic field on the temperature minimum.

  • PDF

Storm-Time Behaviour of Meso-Scale Field-Aligned Currents: Case Study with Three Geomagnetic Storm Events

  • Awuor, Adero Ochieng;Baki, Paul;Olwendo, Joseph;Kotze, Pieter
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.133-147
    • /
    • 2019
  • Challenging Minisatellite Payload (CHAMP) satellite magnetic data are used to investigate the latitudinal variation of the storm-time meso-scale field-aligned currents by defining a new metric called the FAC range. Three major geomagnetic storm events are considered. Alongside SymH, the possible contributions from solar wind dynamic pressure and interplanetary magnetic field (IMF) $B_Z$ are also investigated. The results show that the new metric predicts the latitudinal variation of FACs better than previous studies. As expected, the equatorward expansion and poleward retreat are observed during the storm main phase and recovery phase respectively. The equatorward shift is prominent on the northern duskside, at ${\sim}58^{\circ}$ coinciding with the minimum SymH and dayside at ${\sim}59^{\circ}$ compared to dawnside and nightside respectively. The latitudinal shift of FAC range is better correlated to IMF $B_Z$ in northern hemisphere dusk-dawn magnetic local time (MLT) sectors than in southern hemisphere. The FAC range latitudinal shifts responds better to dynamic pressure in the duskside northern hemisphere and dawnside southern hemisphere than in southern hemisphere dusk sector and northern hemisphere dawn sector respectively. FAC range exhibits a good correlation with dynamic pressure in the dayside (nightside) southern (northern) hemispheres depicting possible electrodynamic similarity at day-night MLT sectors in the opposite hemispheres.