• Title/Summary/Keyword: Solar light

Search Result 1,244, Processing Time 0.028 seconds

AN ANALYSIS OF LONG-TERM LIGHT CURVES OF FOUR NOVALIKE VARIABLES

  • KRAICHEVA ZDRAVKA;STANISHEV VALLERY;POPOV VASIL;SPASSOVSKA IGLIKA
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.227-228
    • /
    • 1996
  • The long-term light curves of the novalikes TT Ari, KR Aur, AM Her and MV Lyr, were compiled and analysed for solar-like cyclical behaviour. The frequency analysis showed long-term cyclical modulations of the brightness of the stars, which can be ascribed to changes of the radii of the late type secondaries in order of ${\Delta}R/R{\simeq} 10^{-4}-10^{-5}$.

  • PDF

Amorphous Diamond for Generating Cold Cathode Fluorescence Light

  • Sung, James-C.;Kan, Ming-Chi;Hu, Shao-Chung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.913-914
    • /
    • 2006
  • Amorphous diamond has a very low work function (1 eV) at modest temperature ($150^{\circ}C$). It has been coat coated on electron emitting electrodes. Such electrodes are used for cold cathode fluorescence lamps (CCFL) that illuminate liquid crystal displays (LCD) for rnote books and television sets. Amorphous diamond can dramatically reduce the turn-on voltage to lit CCFL so the lamp life can be greatly extended. Moreover, the electrical current can be increased to enhance the brightness of the light.

  • PDF

A Forecasting on the Market Size of Korean Solar Salt (한국 식용 천일염 시장규모 전망에 관한 연구)

  • Choi, Byung-Ok;Kim, Bae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4812-4818
    • /
    • 2013
  • This paper contains material of the supply-demand forecasting of solar salt for food in Korea. The solar salt was granted admission for food by the act of salt management in 2007. So, the yearly statistics of solar salt for food are not enough to forecast the supply-demand unsing econometrics. However, the related industry become interested in market size of the solar salt for food and the growth potential of the market. This study deal with the supply-demand forecasting of solar salt for food in light of industry of solar salt, consumption trends, export-import quantity, etc. This research results indicate that the production quantity will be 222-384 thousand MT, the export quantity will be 498-565 thousand MT, the export quantity will be 2.67-3.62 thousand MT, the consumption quantity will be 767-996 thousand MT.

A Computational Analysis on Candela Distribution Curves and Performance Prediction of a Fiber Optic Dish Daylighting System by Photopia (Photopia를 이용한 추적식 디쉬형 집광기의 배광분포 분석 및 자연채광 성능 예측)

  • Oh, Seung-Jin;Han, Hyun-Joo;Jeon, Young-Il;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.104-113
    • /
    • 2012
  • A set of candela distribution curves(CDCs) were generated for a fiber optic dish daylighting system by Photopia under clear sky conditions at different solar altitudes. The candela distribution curves were then exported to Radiance for photometric analysis of a windowless lecture room. Observations were made on the Radiance rendered illuminance images, which provided photo realistic scenes varying with solar altitudes. If no tracking error were assumed, the daylight collection efficiency of the system remained at a constant value of 68.4% during its operation. Higher the solar altitude angle, greater in photometric quantities were observed, which are represented by candela(cd) and total lumens(lm). In all cases considered, however, the angle of light distribution remained fixed reflecting the solar tracking feature of the system. The illuminance uniformity on the workplane lingered around 0.12, which is quite low. This is quite a contrast to its average value of 0.68 of the $2.7m^2$ area directly below the terminal device (diffuser) of the system. The maximum illuminance of 1,340lux was obtained at a solar altitude of 80 degrees.

Development of geothermal exchanger for efficiency improvement of solar cell module (태양전지 모듈의 효율개선을 위한 지열교환 장치 개발)

  • Lee, Jei-Hoon;Oh, Hun;Kim, Jun-Seong;Kim, Do-Woong;Park, Wal-Seo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2966-2970
    • /
    • 2015
  • Recently, solar light power generation is widely extended by support policy to regeneration energy. However generation efficiency is decreased when solar module maintain higher than certain point temperature. Therefore, it is need to maintenance under certain point temperature. An method of solving this problem, this paper is developed geothermal exchanger for efficiency improvement of solar cell module. Geothermal exchanger consisted of heat absorber of solar cell module and heat conductor and radiator. Heat of solar cell module is radiated in the earth by geothermal exchanger. An a result, geothermal exchanger is increased generation amount of solar cell module and experiment result showed costs to about 36% increment of generation power.

Analysis on Temperature Dependence of Crystalline Silicon Solar Cells with Different Emitter Types for Desert Environment (사막형 결정질 실리콘 태양전지의 에미터 구조에 따른 온도 별 특성 변화 분석)

  • Nam, Yoon Chung;Kim, Soo Min;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.135-139
    • /
    • 2014
  • Different power output of solar cells can be observed at high-temperature regions such as desert areas. In this study, performance dependence on operating temperature of crystalline silicon solar cells with different emitter types was analyzed. Based on the light current-voltage (LIV) measurement, temperature coefficients of short-circuit current density ($J_{SC}$), open-circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency were measured and compared for two groups of crystalline silicon solar cells with different emitter types. One group had homogeneously doped (conventional) emitter and another selectively doped (selective) emitter. Varying the operating temperature from 25 to 40, 60, and $80^{\circ}C$, LIV characteristics of the cells were measured and the properties of saturation current densities ($J_0$) were extracted from dark current-voltage (DIV) curve. From the DIV data, effect of temperature on the performance of the solar cells with different electrical structures for the emitter was analyzed. Increasing the temperature, both emitter structures showed a slight increase in $J_{SC}$ and a rapid degradation of $V_{OC}$. FF and power conversion efficiency also decreased with the increasing temperature. The degrees of $J_{SC}$ increase and $V_{OC}$ degradation for two groups were compared and explained. Also, FF change was explained by series and shunt resistances from the LIV data. It was concluded that the degradation of solar cells shows different values at different temperatures depending on the emitter type of solar cells.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

A Study of Moth-eye Nano Structure Embedded Optical Film with Mitigated Output Power Loss in PERC Photovoltaic Modules (PERC 태양전지 모듈의 출력저하 방지를 위한 모스아이(Moth-eye) 광학필름 연구)

  • Oh, Kyoung-suk;Park, Jiwon;Choi, Jin-Young;Chan, Sung-il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.55-60
    • /
    • 2020
  • The PERC photovoltaic (PV) modules installed in PV power plant are still reports potential-induced degradation (PID) degradation due to high voltage potential differences. This is because Na+ ions in the cover glass of PV modules go through the encapsulant (EVA) and transferred to the surface of solar cells. As positive charges are accumulated at the ARC (SiOx/SiNx) interface where many defects are distributed, shunt-resistance (Rsh) is reduced. As a result, the leakage current is increased, and decrease in solar cell's power output. In this study, to prevent of this phenomenon, a Moth-eye nanostructure was deposited on the rear surface of an optical film using Nano-Imprint Lithography method, and a solar mini-module was constructed by inserting it between the cover glass and the EVA. To analyze the PID phenomenon, a cell-level PID acceleration test based on IEC 62804-1 standard was conducted. Also analyzed power output (Pmax), efficiency, and shunt resistance through Light I-V and Dark I-V. As a result, conventional solar cells were decreased by 6.3% from the initial efficiency of 19.76%, but the improved solar cells with the Moth-eye nanostructured optical film only decreased 0.6%, thereby preventing the PID phenomenon. As of Moth-eye nanostructured optical film, the transmittance was improved by 4%, and the solar module output was improved by 2.5%.

Effect of LED Light Quality and Intensity on Growth Characteristics of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.61-61
    • /
    • 2020
  • This experiment was carried out using artificial bed soil and LED in the plastic film house(irradiation time: 07:00-17:00/day). Seedlings(n=63 per 3.3 m2) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity(40-160 µmol/m2/s). Average air temperature from April to September according to the light intensity test was 20.4℃-20.9℃. Average artificial bed soil temperature was 20.1℃-21.7℃. The test area where fluorescent lamp was irradiated tended to be somewhat lower than the LED irradiation area. The chemical properties of the test soil was as follows. pH levels was 6.6-6.7, EC levels 0.9-1.3 dS/m and OM levels 30.6-32.0%. The available P2O5 contents was 73.3-302.3 mg/kg. Exchangeable cations K and Ca contents were higher than the allowable ranges and mg content was high in the fluorescent lamp treatment. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PPFD(Photosynthetic Photon Flux Density) value, illuminance and solar irradiation. Fluorescent lamp treatment had high illuminance value, but PPFD and solar irradiation were lower than LED intensity 40 µmol/m2/s treatment. The photosynthetic rate increased(2.0-3.8 µmolCO2/m2/s) as the amount of light intensity increased, peaking at 120 µmol/m2/s, and then decreasing. The SPAD (chlorophyll content) value decreased as the amount of light intensity increased, and was the highest at 36.1 in fluorescent lamp treatment. Ginseng germination started on April 5 and took 14-17 days to germinate. The overall germination rate was 68.8-73.6%. The growth of aerial parts(plant height etc.) were generally excellent in the treatment of light intensity of 120-160 µmol/m2/s. The plant height was 41.9 cm, stem length was 24.1 cm, leaf length was 9.8 cm and stem diameter was 5.6 mm. The growth of underground part (root length etc.) was the best in the treatment with 120 µmol/m2/s of light intensity. Due to the root length was long(24.8 cm) and diameter of taproot was thick(18.7 mm), the fresh root weight was the heaviest at 24.8 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping-off caused by Rhizoctonia solani occurred 0.6-1.5% and incidence ratio of rusty root ginseng was 30.8-62.3%. It is believed that the reason for the high incidence of rusty root ginseng is that the amount of field moisture capacity of artificial bed soil is larger than the soil. Leaf discoloration rate was 13.7-32.3%.

  • PDF