• Title/Summary/Keyword: Solar cell efficiency

Search Result 1,342, Processing Time 0.034 seconds

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011 (설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Paik, Yong-Kyoo;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

Development of Radiation Image Sensor using Heterojunction (이종접합을 이용한 방사선 영상 센서 개발)

  • Kim, Young-Bin;Yun, Min-Seok;Kim, Min-Woo;Jung, Suk-Hee;Kim, Yoon-Suk;Oh, Kyung-Min;Nam, Sang-Hee;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.27-35
    • /
    • 2009
  • In this study, the basic research verifying possibility of applications as radiology image sensor in Digital Radiography was performed, the radiology image sensor was fabricated using double layer technique tio decrease dark current. High efficiency material in substitution for a-Se have been studied as a direct method of imaging detector in Digital Radiography to decrease dark current by using Hetero junction already used as solar cell, semiconductor. Particle-In-Binder method is used to fabricate radiology image sensor because it has a lot of advantages such as fabrication convenient, high yield, suitability for large area sensor. But high leakage current is one of main problem in PIB method. To make up for the weak points, double layer technique is used, and it is considered that high efficient digital radiation sensor can be fabricated with easy and convenient process. In this study, electrical properties such as leakage current, sensitivity is measured to evaluate double layer radiation sensor material.

  • PDF

Preparation of superhydrophilic coating solutions containing fluorosurfactants and characterization of their antifogging and antifouling properties (불소계면활성제를 함유한 초친수 코팅액의 제조 및 방담 방오 특성)

  • Lee, Soo;Im, Sun Moon;Hwang, Heon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.525-535
    • /
    • 2017
  • In order to produce hydrophilic coating solution, which has superior antifogging and antifouling effect on the glass surface of solar cell module as well as improving photovoltaic efficiency, nanosilica was dispersed in an aqueous solution of Tween 20 and fluorosurfactant composed of decafluorobutane and polyethylene glycol. The antifogging effect at high temperature was excellent for all the coating solutions containing nanosilica, but the antifouling effect was observed when the content of nanosilica was over 6 wt%. As the content of fluorosurfactant increased, the initial water contact angle slightly increased and the antifogging effect remained well until 500 wiping with wet $Wipeol^{(R)}$. The antifouling effect was also excellent regardless of the content of fluorosurfactant, thus 0.1 wt% of the fluorosurfactant was enough for a coating solution production. From the AFM results, when 0.1 wt% to 0.3 wt% of the fluoro surfactant was added, the fractal structure of the coated glass surface was clearly existed and contributed to the better antifouling effect. The transmittance of coated glass surface was highest in TL-1 coating solution containing 0.1 wt% of fluorosurfactant, and the addition of fluorosurfactant in a larger amount than 0.1 wt% did not improve the transmittance. This result is in good agreement with the previous AFM result which shows a high surface roughness as well as a fractal structure formation for the TL-1 coating solution.

A Czochralski Process Design for Si-single Crystal O2 Impurity Minimization with Pulling Rate, Rotation Speed and Melt Charge Level Optimization (Pulling rate, rotation speed 및 melt charge level 최적화에 의한 쵸크랄스키 공정 실리콘 단결정의 O2 불순물 최소화 설계)

  • Jeon, Hye Jun;Park, Ju Hong;Artemyev, Vladimir;Hwang, Seon Hee;Song, Su Jin;Kim, Na Yeong;Jung, Jae Hak
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.369-380
    • /
    • 2020
  • Most mono-crystalline silicon ingots are manufactured by the Czochralski (Cz) process. But If there are oxygen impurities, These Si-ingot tends to show low-efficiency when it is processed to be solar cell substrate. For making single-crystal Si- ingot, We need Czochralski (Cz) process which melts molten Si and then crystallizing it with seed of single-crystal Si. For melts poly Si-chunk and forming of single-crystalline Si-ingot, the heat transfer plays a main role in the structure of Cz-process. In this study to obtain high-quality Si ingot, the Cz-process was modified with the process design. The crystal growth simulation was employed with pulling rate and rotation speed optimization. Studies for modified Cz-process and the corresponding results have been discussed. The results revealed that using crystal growth simulation, we optimized the oxygen concentration of single crystal silicon by the optimal design of the pulling rate, rotation speed and melt charge level of Cz-process.

저온 공정 온도에서 $Al_2O_3$ 게이트 절연물질을 사용한 InGaZnO thin film transistors

  • 우창호;안철현;김영이;조형균
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.11-11
    • /
    • 2010
  • Thin-film-transistors (TFTs) that can be deposited at low temperature have recently attracted lots of applications such as sensors, solar cell and displays, because of the great flexible electronics and transparent. Transparent and flexible transistors are being required that high mobility and large-area uniformity at low temperature [1]. But, unfortunately most of TFT structures are used to be $SiO_2$ as gate dielectric layer. The $SiO_2$ has disadvantaged that it is required to high driving voltage to achieve the same operating efficiency compared with other high-k materials and its thickness is thicker than high-k materials [2]. To solve this problem, we find lots of high-k materials as $HfO_2$, $ZrO_2$, $SiN_x$, $TiO_2$, $Al_2O_3$. Among the High-k materials, $Al_2O_3$ is one of the outstanding materials due to its properties are high dielectric constant ( ~9 ), relatively low leakage current, wide bandgap ( 8.7 eV ) and good device stability. For the realization of flexible displays, all processes should be performed at very low temperatures, but low temperature $Al_2O_3$ grown by sputtering showed deteriorated electrical performance. Further decrease in growth temperature induces a high density of charge traps in the gate oxide/channel. This study investigated the effect of growth temperatures of ALD grown $Al_2O_3$ layers on the TFT device performance. The ALD deposition showed high conformal and defect-free dielectric layers at low temperature compared with other deposition equipments [2]. After ITO was wet-chemically etched with HCl : $HNO_3$ = 3:1, $Al_2O_3$ layer was deposited by ALD at various growth temperatures or lift-off process. Amorphous InGaZnO channel layers were deposited by rf magnetron sputtering at a working pressure of 3 mTorr and $O_2$/Ar (1/29 sccm). The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. The TFT devices were heat-treated in a furnace at $300^{\circ}C$ and nitrogen atmosphere for 1 hour by rapid thermal treatment. The electrical properties of the oxide TFTs were measured using semiconductor parameter analyzer (4145B), and LCR meter.

  • PDF

Study on Improvement of Signal to Noise Ratio for HgI2 Radiation Conversion Sensor Using Blocking Layer (Blocking layer 적용을 통한 HgI2 방사선 변환센서의 신호대 잡음비 향상에 관한 연구)

  • Park, Ji-Koon;Yoon, In-Chan;Choi, Su-Rim;Yoon, Ju-Sun;Lee, Young-Kyu;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.97-101
    • /
    • 2011
  • In this study, the basic research verifying possibility of applications as radiology image sensor in Digital Radiography was performed, the radiology image sensor was fabricated using double layer technique tio decrease dark current. High efficiency material in substitution for a-Se have been studied as a direct method of imaging detector in Digital Radiography to decrease dark current by using Hetero junction already used as solar cell, semiconductor. Particle-In-Binder method is used to fabricate radiology image sensor because it has a lot of advantages such as fabrication convenient, high yield, suitability for large area sensor. But high leakage current is one of main problem in PIB method. To make up for the weak points, double layer technique is used, and it is considered that high efficient digital radiation sensor can be fabricated with easy and convenient process. In this study, electrical properties such as leakage current, sensitivity is measured to evaluate double layer radiation sensor material.

The Survey and Analysis of Technology Level on Korea's Key Green Technologies and its Implications (우리나라의 중점녹색기술수준 조사.분석 및 시사점)

  • Hong, Mi-Young;Hwang, KiHa;Hong, Jung Suk;Lee, Kyong-Jae
    • Journal of Korea Technology Innovation Society
    • /
    • v.16 no.2
    • /
    • pp.476-505
    • /
    • 2013
  • Korea government has established and pursued green technology development strategy as the core of green growth, for example, withdrawal of 27 key green technologies through 'green technology research and development comprehensive plan ('09.1)' since 'low carbon green growth' was proposed as a new national development paradigm. In this study, we performed the Delphi survey of technology levels of 131 strategic product and service technologies derived from 27 key green technologies, utilizing large-scale group of green technology experts. The survey of technology level among main five nations resulted in the world's leading nation (US) versus EU (99.4%), Japan (95.3%), Korea (77.7%), China (67.1%) and Korea was ranked fourth. The technology gap between the world's leading nation (US) and Korea is 4.1 years behind EU (3.9 years) and Japan(3.1 years), but 2.1 years earlier than China. For our nation, key green technologies with high technology level are 'improved light water reactor (90.1%)', 'silicon-based solar cell (85.0%)', 'high-efficiency low-emission car (84.5%)' in order. Depending on the investment type of key green technologies, technology level is represented as short-term (85.0%), mid-term (77.3%) and long-term (71.1%) in order, indicating that lower technology level requires mid-to long-term investment and that the investment type is set appropriate.

  • PDF

Radiation detector material development with multi-layer by hetero-junction for the reduction of leakage current (헤테르접합을 이용한 누설전류 저감을 위한 다층구조의 방사선 검출 물질 개발)

  • Oh, Kyung-Min;Yoon, Min-Seok;Kim, Min-Woo;Cho, Sung-Ho;Nam, Sang-Hee;Park, Ji-Goon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.11-15
    • /
    • 2009
  • In this study, the basic research verifying possibility of applications as radiology image sensor in Digital Radiography was performed, the radiology image sensor was fabricated using a multi-layer technique to decrease dark current. High efficiency materials in substitution for Amorphous Selenium(a-Se) have been studied as a direct method of imaging detector in Digital Radiography to decrease dark current by using PN junction or Hetero junction already used as solar cell, semiconductor. Particle-In -Binder method is used to fabricate radiology image sensor because it has a lot of advantages such as fabrication convenient, high yield, suitability for large area sensor. But high leakage current is one of main problem in Particle-In -Binder method. To make up for the weak points, multi-layer technique is used, and it is considered that high efficient digital radiation sensor can be fabricated with easy and convenient process. In this study, electrical properties such as leakage current, sensitivity, signal linearity is measured to evaluate multi-layer radiation sensor material.

  • PDF

Research on the Multi-electrode Plasma Discharge for the Large Area PECVD Processing

  • Lee, Yun-Seong;You, Dae-Ho;Seol, You-Bin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.478-478
    • /
    • 2012
  • Recently, there are many researches in order to increase the deposition rate (D/R) and improve film uniformity and quality in the deposition of microcrystalline silicon thin film. These two factors are the most important issues in the fabrication of the thin film solar cell, and for the purpose of that, several process conditions, including the large area electrode (more than 1.1 X 1.3 (m2)), higher pressure (1 ~ 10 (Torr)), and very high frequency regime (VHF, 40 ~ 100 (MHz)), have been needed. But, in the case of large-area capacitively coupled discharges (CCP) driven at frequencies higher than the usual RF (13.56 (MHz)) frequency, the standing wave and skin effects should be the critical problems for obtaining the good plasma uniformity, and the ion damage on the thin film layer due to the high voltage between the substrate and the bulk plasma might cause the defects which degrade the film quality. In this study, we will propose the new concept of the large-area multi-electrode (a new multi-electrode concept for the large-area plasma source), which consists of a series of electrodes and grounds arranged by turns. The experimental results with this new electrode showed the processing performances of high D/R (1 ~ 2 (nm/sec)), controllable crystallinity (~70% and controllable), and good uniformity (less than 10%) at the conditions of the relatively high frequency of 40 MHz in the large-area electrode of 280 X 540 mm2. And, we also observed the SEM images of the deposited thin film at the conditions of peeling, normal microcrystalline, and powder formation, and discussed the mechanisms of the crystal formation and voids generation in the film in order to try the enhancement of the film quality compared to the cases of normal VHF capacitive discharges. Also, we will discuss the relation between the processing parameters (including gap length between electrode and substrate, operating pressure) and the processing results (D/R and crystallinity) with the process condition map for ${\mu}c$-Si:H formation at a fixed input power and gas flow rate. Finally, we will discuss the potential of the multi-electrode of the 3.5G-class large-area plasma processing (650 X 550 (mm2) to the possibility of the expansion of the new electrode concept to 8G class large-area plasma processing and the additional issues in order to improve the process efficiency.

  • PDF

Technical Trends of Hydrogen Production (수소생산 기술동향)

  • Ryi, Shin-Kun;Han, Jae-Yun;Kim, Chang-Hyun;Lim, Hankwon;Jung, Ho-Young
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.121-132
    • /
    • 2017
  • The increase of greenhouse gases and the concern of global warming instigate the development and spread of renewable energy and hydrogen is considered one of the clean energy sources. Hydrogen is one of the most elements in the earth and exist in the form of fossil fuel, biomass and water. In order to use hydrogen for a clean energy source, the hydrogen production method should be eco-friendly and economic as well. There are two different hydrogen production methods: conventional thermal method using fossil fuel and renewable method using biomass and water. Steam reforming, autothermal reforming, partial oxidation, and gasification (using solid fuel) have been considered for hydrogen production from fossil fuel. When using fossil fuel, carbon dioxide should be separated from hydrogen and captured to be accepted as a clean energy. The amount of hydrogen from biomass is insignificant. In order to occupy noticeable portion in hydrogen industries, biomass conversion, especially, biological method should be sufficiently improved in a process efficiency and a microorganism cultivation. Electrolysis is a mature technology and hydrogen from water is considered the most eco-friendly method in terms of clean energy when the electric power is from renewable sources such as photovoltaic cell, solar heat, and wind power etc.