• Title/Summary/Keyword: Solar cell application

Search Result 328, Processing Time 0.025 seconds

A Study on Application of Radiant Floor Heating in Large Space (대공간의 바닥 복사 난방 적용에 관한 연구)

  • Ahn, Min-Hee;Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.79-85
    • /
    • 2007
  • This paper addresses the indoor air quality when radiant floor heating is applied in large space. Radiant heat exchange between surfaces depends on the orientation and the temperature of the surfaces. Also, the temperature and the radiant characteristic of the wall and the roof that face the floor have great influence on the indoor air environment due to the largeness of the wall and the roof in large spaces. In this study, we simulate a test-cell(25X20X10) using a ies YE And using a CFD(microflo in VE), an indoor air environment was investigated to establish the optimum temperature of floor. At the first time of the heating, high floor temperature is demanded. At the middle of the heating, however, the temperature of the residential space was formed appropriately, although the temperature of the floor was set low.

Characteristics of Ti Thin films and Application as a Working Electrode in TCO-Less Dye-Sensitized Solar Cells

  • Joo, Yong Hwan;Kim, Nam-Hoon;Park, Yong Seob
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.93-96
    • /
    • 2017
  • The structural, electrical and optical properties of Ti thin films fabricated by dual magnetron sputtering were investigated under various film thicknesses. The fabricated Ti thin films exhibited uniform surfaces, crystallinity, various grain sizes, and with various film thicknesses. Also, the crystallinity and grain size of the Ti thin films increased with the increase of film thickness. The electrical properties of Ti thin films improved with the increase of film thickness. The results showed that the performance of TCO-less DSSC critically depended on the film thickness of the Ti working electrodes, due to the conductivity of Ti thin film. However, the maximum conversion efficiency of TCO-less DSSC was exhibited at the condition of 100 nm thickness due to the surface scattering of photons caused by the variation of grain size.

Ag nanorod manufacturing using nano-imprint lipography process and application of amorphous thin film solar cells (나노 임프린트 공정을 이용한 Ag 나노로드 제조 및 비정질 박막 태양전지 적용)

  • Jang, JiHoon;Han, Kang-Soo;Cho, Jun-Sik;Lee, Heon;Park, Hai Woong;Song, Jinsoo;Lee, Jeong Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.103.2-103.2
    • /
    • 2011
  • 비정질 실리콘 태양전지의 효율을 증가하기 위하여 많이 사용되는 방법 중 하나는 입사되는 빛의 산란을 증가하여 태양전지의 광흡수를 증가시키는 방법이다. 이를 위하여 양극전극으로 사용되는 TCO층의 일정한 패턴 처리를 통하여 광산란을 증가시키는 방법이 사용되고 있다. 본 연구에서는 나노 임프린트 리소그래피방법을 사용하여 Ag 나노로드를 증착한 기판을 제조하고 이를 비정질 실리콘 태양전지에 적용하였다. 실험결과, 그림과 같이 높이와 너비가 300nm 정도로 일정한 패턴의 Ag 나노로드를 제조하였다. 또한, 그 위에 증착된 Si 박막의 경우, 나노로드 전체를 감싸는 돔 형태로 성장하였다. 이와 같은 나노로드 위에 substrate n-i-p 구조의 비정질 박막 태양전지를 증착하고 그 특성변화를 분석하고자 하였다.

  • PDF

A study on the development of DC-DC converter for low-power DSC

  • Park, Sung-Joon;Kim, Whi-Young
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.52-56
    • /
    • 2009
  • In this research, we have studied the development of dc-dc converter suitable for the driving of mobile instruments by using a dye-sensitized solar cell(DSC). We also have designed a interlocking circuit. The circuit makes power generation be saved in one battery and concurrently be discharged in the other battery. As this application, mobile devices such as MP3, cellular phone are operated by using power generator from DSC during the daytime and they can be operated by using the saving energy of the daytime during the night. Consequently, it has a simple and robust circuit configuration. Besides, we designed dc-dc converter circuit to drive low power instruments by using NMOS switch and PMOS rectifier. Operational modes are analysed, and then validity of the proposed interface circuit is verified through DCS.

Ni Silicide Formation and the Crystalline Silicion Film Growth

  • Kim, Jun-Dong;Ji, Sang-Won;Park, Yun-Chang;Lee, Jeong-Ho;Han, Chang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.219-219
    • /
    • 2010
  • Silicides have been commonly used in the Si technology due to the compatibility with Si. Recently the silicide has been applied in solar cells [1] and nanoscale interconnects [2]. The modulation of Ni silicide phase is an important issue to satisfy the needs. The excellent electric-conductive nickel monosilicide (NiSi) nanowire has proven the low resistive nanoscale interconnects. Otherwise the Ni disilicide (NiSi2) provides a template to grow a crystalline Si film above it by the little lattice mismatch of 0.4% between Si and NiSi2. We present the formation of Ni silicide phases performed by the single deposition and the co-deposition methods. The co-deposition of Ni and Si provides a stable Ni silicide phase at a reduced processing temperature comparing to the single deposition method. It also discusses the Schottky contact formation between the Ni silicide and the grown crystalline Si film for the solar cell application.

  • PDF

Recent Developments in Synthesis of Colloidal Quantum Dots (콜로이드 양자점 합성의 다양한 연구 개발 동향)

  • Jung, Jae-Yong;Hong, Jong-Pal;Kim, Young-Kuk
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.346-354
    • /
    • 2018
  • Over the last decade, the study of the synthesis of semiconductor colloidal quantum dots has progressed at a tremendous rate. Colloidal quantum dots, which possess unique spectral-luminescent characteristics, are of great interest in the development of novel materials and devices, which are promising for use in various fields. Several studies have been carried out on hot injection synthesis methods. However, these methods have been found to be unsuitable for large-capacity synthesis. Therefore, this review paper introduces synthesis methods other than the hot injection synthesis method, to synthesize quantum dots with excellent optical properties, through continuous synthesis and large capacity synthesis. In addition, examples of the application of synthesized colloid quantum dots in displays, solar cells, and bio industries are provided.

Synthesis, Characterization and Determination of HOMO-LUMO of the Substituted 1,3,5-Triazine Molecule for the Applications of Organic Electronics

  • Pakkath, Rajeesh;Reddy, Eeda Koti;Kuriakose, Sheena;Saritha, C;Sajith, Ayyiliath M;Karuvalam, Ranjith Pakkath;Haridas, Karickal Raman
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.5
    • /
    • pp.352-359
    • /
    • 2019
  • The most important parameter of organic molecules for energy harvesting application focuses mainly on their band gap (HOMO-LUMO). In this report, we synthesized differently substituted 1,3,5-triazine based organic molecule which on future processing can be used in organic electronics like solar cells and OLED's. The energy gap of the synthesized novel analogue was calculated using cyclic voltammetry, UV-Visible spectroscopy and compared with density functional theory (DFT) studies.

In2S3 Co-Sensitized PbS Quantum Dot Solar Cells

  • Basit, Muhammad Abdul;Park, Tae Joo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.273-273
    • /
    • 2014
  • Quantum-dot sensitized solar cells (QDSCs) are an emerging class of solar cells owing to their easy fabrication, low cost and material diversity. Despite of the fact that the maximum conversion efficiency of QDSCs is still far less than that of Dye-Sensitized Solar Cells (>12 %), their unique characteristics like Multiple Exciton Generation (MEG), energy band tune-ability and tendency to incorporate multiple co-sensitizers concurrently has made QDs a suitable alternative to expensive dyes for solar cell application. Lead Sulfide (PbS) Quantum dot sensitized solar cells are theoretically proficient enough to have a photo-current density ($J_{sc}$) of $36mA/cm^2$, but practically there are very few reports on photocurrent enhancement in PbS QDSCs. Recently, $Hg^{2+}$ incorporated PbS quantumdots and Cadmium Sulfide (CdS) co-sensitized PbS solarcells are reported to show an improvement in photo-current density ($J_{sc}$). In this study, we explored the efficacy of $In_2S_3$ as an interfacial layer deposited through SILAR process for PbS QDSCs. $In_2S_3$ was chosen as the interfacial layer in order to avoid the usage of hazardous CdS or Mercury (Hg). Herein, the deposition of $In_2S_3$ interfacial layer on $TiO_2$ prior to PbS QDs exhibited a direct enhancement in the photo-current (Isc). Improved photo-absorption as well as interfacial recombination barrier caused by $In_2S_3$ deposition increased the photo-current density ($J_{sc}$) from $13mA/cm^2$ to $15.5mA/cm^2$ for single cycle of $In_2S_3$ deposition. Increase in the number of cycles of $In_2S_3$ deposition was found to deteriorate the photocurrent, however it increased $V_{oc}$ of the device which reached to an optimum value of 2.25% Photo-conversion Efficiency (PCE) for 2 cycles of $In_2S_3$ deposition. Effect of Heat Treatment, Normalized Current Stability, Open Circuit Voltage Decay and Dark IV Characteristics were further measured to reveal the characteristics of device.

  • PDF

Analysis of Generation Characteristics of a Bifacial BIPV System According to Installation Methods (양면형 BIPV 시스템의 설치환경에 따른 발전특성 분석)

  • Kang, Jun Gu;Kim, Jin Hee;Kim, Jun Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.121-125
    • /
    • 2015
  • BIPV system is one of the best ways to harness PV module. The BIPV system not only produces electricity, but also acts as a building envelope. Thus, it has the strong point of increasing the economical efficiency by applying the PV modules to the buildings. Bifacial solar cells can convert solar energy to electrical energy from both sides of the module. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial soalr cells. Therefore, many of the module manufacturers can easily produce the bifacial solar cells without changing their manufacturing equipment. Moreover, bifacial BIPV system has much potential in building application by utilizing glass to glass structure. However, the performance of bifacial solar cells depends on a variety of factors, ranging from the back surface to surrounding conditions. Therefore, in order to apply bifacial solar cells to buildings, an analysis of bifacial PV module performance should be carried out that includes a consideration of various design elements, and reflects a wide range of installation conditions. As a result it found that the white insulation reflector type can improve the performance of the bifacial BIPV system by 16%, compared to the black insulation reflector type. The performance of the bifacial BIPV was also shown to be influenced by inclination angle, due to changes in both the amount of radiation captured on the front face and the radiation transmitted to the rear face through the transparent space. In this study is limited design condition and installation condition. Accordingly follow-up researches in this part need to be conducted.

Optimal Electricity and Heat Production Strategies of Fuel Cell Device in a Micro-grid Energy System (마이크로 전력계통에서 연료전지 발전시스템의 전기/열의 최적운영 기법 연구)

  • Lee, Joo-Won;Park, Jong-Bae;Kim, Su-Duk;Kim, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1093-1099
    • /
    • 2009
  • Alternative energy sources such as renewable energy like solar power systems, wind power systems, or fuel cell power systems has been the rising issue in the electrical power system. This paper discusses an economic study analysis of fuel cells in the korean electricity market. It includes the basic concept of a fuel cell and the korean electricity market. It also describes the need of renewable energy and how the fuel cell is connected with the local grid. This paper shows the impact of production and recovering thermal energy of a grid-connected fuel cell power system. The profit maximization approach has been structured including electrical power trade with the local grid and heat trade within the micro-grid. The strategies are evaluated using a local load that uses electric and thermal power which has different patterns between summer and winter periods. The solution algorithm is not newly developed one, but is solved by an application called GAMS. Results indicate the need and usefulness of a fuel cell power system.