• Title/Summary/Keyword: Solar cell

Search Result 3,144, Processing Time 0.027 seconds

단결정 태양전지의 최적운전을 위한 전압-전류, 특성

  • Hong, Chang-U;Choe, Yong-Seong;Lee, Gyeong-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.10-10
    • /
    • 2010
  • The solar cell energy is considered as a clean energy source in the world. However, because the output of solar cell is not constant, it needs to study the relationships of the DC voltage, the DC current and the DC power of the solar cell. This paper presents the solar cell output characteristics and the maximum power point of the solar cell under different irradiation conditions.

  • PDF

Perovskite solar cell (페로브스카이트 태양전지)

  • Lee, Jin-Wook;Park, Nam-Gyu
    • Vacuum Magazine
    • /
    • v.1 no.4
    • /
    • pp.10-13
    • /
    • 2014
  • Since the development of 9.7% efficient long-term stable solid state perovskite solar cell in 2012, intensive study on perovskite solar cell has been performed. As a result, power conversion efficiency (PCE) has reached 20.1%. In-dept study on perovskite light absorber enabled understanding of origin of superb photovoltaic performance of perovskite solar cell. In this article, historical evolutions of perovskite solar cell along with key physical properties enabling high PCE are presented. Several important results for development of high efficiency perovskite solar cell are introduced. Finally, in-present research issues and future direction for solving these issues are discussed.

A study on characteristic transmission-reflection by environmental change of solar cell (태양전지셀의 환경변화에 따른 투과-반사특성 연구)

  • Shin, Sang-Wuk;Lee, Se-Hyun;Cho, Mee-Ryoung;Hwang, Myung-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.233-236
    • /
    • 2006
  • In this paper, I try to measure characteristic transmission-reflection by environmental change or solar cell. I keep my eye on the characteristics variation of solar cell as environmental change. As a result, A variation caused by voltage by an effect on the efficiency of solar PV cell. Hence, it is an important variable when a designer plan to make a solar cell.

  • PDF

New Generation Multijunction Solar Cells for Achieving High Efficiencies

  • Lee, Sunhwa;Park, Jinjoo;Kim, Youngkuk;Kim, Sangho;Iftiquar, S.M.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.

A Study on the Near Infrared Ray Wavelength Conversion Film for Improving Conversion Efficiency of Solar Cell (태양전지 변환 효율 향상을 위한 근적외선 파장 변환 필름에 관한 연구)

  • Park, Byung Kyu;Park, Gye Choon;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.699-704
    • /
    • 2017
  • The amount of electric power for photovoltaic power generation depends on the location of the power plant and the direction of solar cell. The solar cell controls the generation of solar power plants. Therefore, the structure of solar cell, manufacturing method, and optic technology were factors contributing to increased solar cell efficiency; however, the technical limit has been reached. Herein, we propose a new method to increase the solar cell efficiency using a wavelength conversion technology that converts ultraviolet and infrared rays, which are not effectively used in solar cells, into effective wavelength of solar cell. We used fluoride $Na(Ca)YF_4$ phosphor for wavelength conversion. Then, a wavelength-conversion fluorescent paste, prepared using an organic-silicon binder, was used to prepare a film that was applied to Si solar cells. It was confirmed that conversion efficiency improved by 5% or more.

Study on the tree-mimic array of solar cell modules (수목형상에 따른 태양전지 모듈의 배열 연구)

  • Kim, Ki-Hyun;Yun, Rin
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.32-39
    • /
    • 2011
  • This study is about the installation of the solar cell modules. The solar cell modules are built by the tree-mimic structure, and the performance is compared with that of the flat-plate type solar cell module installation. The mathematical tree model, which was suggested by Fisher and Honda, is utilized to determine the location of the solar cell modules for the tree-mimic type. The experiment shows that the generated electric power of the flat-plate type is higher than that of the tree-mimic type by 30% for one month of July. This lower performance for the tree-mimic type comes from the shading effects among the solar cell modules. The theoretical calculation for the absorbed solar radiation on the two types of solar cell installation shows that the tree-mimic type is higher than the flat-plate type by 8.5%. The shading area for the tree-mimic model is calculated with time by using the 3D-CAD, which will be utilized for the optimization of the tree-mimic model in the future.

Efficiency improvement of solar cell by back surface field (이면전계(BSF)에의한 solar cell의 효율개선효과)

  • 소대화;강기성;박정철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.88-90
    • /
    • 1990
  • In this study, PN junction solar cell and P$\^$+/-N-N$\^$+/ BSF solar cell, using N-type(111), 10$\^$16/[atoms/cm$\^$-3/] wafer, were fabricated applying that ion implant method whose dose are 1E14, 1E15, 3E15 and its acceleration energy is 50Key, 100Key respectively. The impurity concentration of two types of front-side are 10$\^$18/[atoms/cm$\^$-3/] and back-side concentration for BSF solar cell is 10$\^$17/[atoms/cm$\^$-3/]. As a result of comparison for 2 typical types of cells out of various fabricated samples, open circuit voltage (Voc), short circuit current(Isc) of BSF solar cell are larger than those of PN solar cell by 48[%], 14[%]. Considering that the efficiency of BSF cell is 2.5[%] as well as PN solar cell's is 7.5[%], 10.0[%] of efficiency improvement effect can be obtained from BSF solar cell. Futhermore, in consequence of front-side impurity concentration change from 10$\^$17/[atoms/cm$\^$-3] to 10$\^$20/[atoms/cm$\^$-3/] alternately, the most ideal result can be expected when it is 10$\^$18/[atoms/cm$\^$-3/].

Output Power Characteristics of CPV Solar Cell due to Non-uniform Illumination (고집광 태양전지의 비균등 조사에 의한 출력특성)

  • Shin, Goo-Hwan;Ryu, Kwang-Sun;Cha, Won-Ho;Myung, Noh-Hoon;Kim, Young-Sik;Kang, Gi-Hwaw
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.269-274
    • /
    • 2011
  • A solar cell is primary parts to produce electrical energy from the Sun. And, we can utilize those solar cells as a power generation system in home, factory, and so on. In order to make proper power, the solar cells are configured in series and parallel lay down. In condition of uniform illumination, the solar array will produce an enough power by photovoltaic effects from the solar cells. In case of non-uniform illumination on the solar cells, the power will be dramatically decreased compared to design. Fortunately, there were so many research outputs regarding the illumination effects on solar array. In this work, we tried to find out the non-uniform effects on unit CPV solar cell, because there were no research outputs for unit CPV solar cell considering illumination. The CPV solar cell was used in CPV system to make a power by the Sun. We chosen the triple junction solar cell of GaAsInP2Ge for simulation, which has a 30 % of conversion efficiency. By simulation, we obtained the output performance of CPV solar cells in condition of various illumination by using Hamming Window function. Its performance was degraded by 10 % to 50 % depending illumination conditions.

  • PDF

A study of Comparative Analysis of CPV and PV Module through Long-term Outdoor Testing (장기 Outdoor Test를 통한 CPV와 PV 모듈의 발전량 비교분석)

  • Kim, Minsu;Lee, Yuri;Cho, Minje;Oh, Soo Young;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Today, photovoltaic power generation mostly uses Si crystalline solar cell modules. The most vulnerable part of the Si solar cell module is that the power generation decreases due to the temperature rise. But, it is widely used because of low installation cost. In the solar market, where Si crystalline solar cell modules are widely used. The CPV (Concentrated Photovoltaic) module appeared in the solar market. The CPV module reduces the manufacturing cost of the solar cell by using non-Si in the solar cell. Also, there is an advantage that a rise in temperature does not cause a drop in power generation. But this requires high technology to install and has a disadvantage that the initial installation cost is expensive compared to normal Si solar cell module. So that we built a testbed to see these characteristics. The testbed was used to measure the amount of power generation in a long-term outdoor environment and compared with the general Si solar cell module.

Recent Development Status of Organic Solar Cells (유기태양전지의 개발현황)

  • Pang, Chang-Hyun;Park, Keun-Hee;Jung, Dong-Geun;Chae, Hee-Yeop
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.167-171
    • /
    • 2007
  • Currently, the alternative energy is one of the critical issues because of exhaustion of petroleum resources and its high cost. The solar cell is considered as the one of the promising alternative energy. And the solar cell can be classified to inorganic solar cell and organic solar cell. Although the efficiency of organic solar cell is very lower than the that of inorganic solar cell, organic solar cells have many advantages including low process cost, high transmittance, color variation, and flexibility. For these reasons, organic solar cells have the potential in low cost solar cell market that is challenging for inorganic solar cells. Recent researches of organic solar cell is concentrating on enhancement of efficiency, lifetime, and stability to order to commercially use. Working principles and the development issues of organic solar cells are discussed in this paper.