• 제목/요약/키워드: Solar cell

검색결과 3,165건 처리시간 0.041초

고효율 적층형 태양전지를 위한 유무기 페로브스카이트 (Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells)

  • 박익재;김동회
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.146-169
    • /
    • 2019
  • To overcome the theoretical efficiency of single-junction solar cells (> 30 %), tandem solar cells (or multi-junction solar cells) is considered as a strong nominee because of their excellent light utilization. Organic-inorganic halide perovskite has been regarded as a promising candidate material for next-generation tandem solar cell due to not only their excellent optoelectronic properties but also their bandgap-tune-ability and low-temperature process-possibility. As a result, they have been adopted either as a wide-bandgap top cell combined with narrow-bandgap silicon or CuInxGa(1-x)Se2 bottom cells or for all-perovskite tandem solar cells using narrow- and wide-bandgap perovskites. To successfully transition perovskite materials from for single junction to tandem, substantial efforts need to focus on fabricating the high quality wide- and narrow-bandgap perovskite materials and semi-transparent electrode/recombination layer. In this paper, we present an overview of the current research and our outlook regarding perovskite-based tandem solar technology. Several key challenges discussed are: 1) a wide-bandgap perovskite for top-cell in multi-junction tandem solar cells; 2) a narrow-bandgap perovskite for bottom-cell in all-perovskite tandem solar cells, and 3) suitable semi-transparent conducting layer for efficient electrode or recombination layer in tandem solar cells.

전극 함몰형 고효율 실리콘 태양전지에서의 texturing 효과 (Texturing Effects on High Efficiency Silicon Buried Contact Solar Cell)

  • 지일환;조영현;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 춘계학술대회 논문집
    • /
    • pp.172-176
    • /
    • 1995
  • Schemes to trap weakly absorbed light into the cell have played an important role in improving the efficiency of both amorphous and crystlline silicon solar cells. One class of scheme relies on randomizing the direction of light within the cell by use of Lambertian(diffuse)surfaces. A second class of scheme relies on the use fo well defined geometrical features to control the direction of light wihin the cell, Widly used geometrical features in crystalline silicon solar cells are the square based pyramids and V-shaped grooves formed in (100) orientated surfaces by intersecting(III) crystallographic planes exposed by anisotropic etching. 18.5% conversion efficiency of Buried Contact Solar Cell with pyramidally textured surface has been achieved. 18.5% efficiency of silicon solar cell is one the highest record in the world The efficieny of cell without textured surface was 16.6%, When adapting textured surface to the Cell, the efficiency has been improved over 12%.

  • PDF

태양에너지 연구에 있어서의 스위스의 첨단기술 (A New Techonlogy of Swiss on Solar Engrey Study)

  • 하태규
    • 태양에너지
    • /
    • 제16권2호
    • /
    • pp.3-6
    • /
    • 1996
  • 태양광선을 전류로 직접 변화시키는 과정(Photo-voltamic)은 가장 근사하게 에너지를 얻어내는 방법중의 하나이다. 그러나, 이러한 태양전류가 미래 에너지의 원천으로서 가치를 갖게 하기 위해서는 새로 개발된 태양전지(Solar Cell)의 가격이 아주 저렴해야 한다. 스위스 대학교의 몇 개의 연구소는 이러한 태양에너지 개발에 대한 기술(Solar Technology)에 있어서 세계에서도 첨단적인 위치에 놓여있다. "고전적이고 재래식 재료가 새옷을 입고 나왔다"고 최근 스위스의 Neuenburg 대학의 Institute of Microtechnic(IMT)에서 개발한 Micromorphe Solar Cell을 두고 얘기하고 있다. 왜냐하면 이 새로 개발된 Solar Cell은 역시 재래에 늘 사용하던 Silicium을 부분적으로 이용하고 있기 때문이다. 그러나, 이 Solar Cell에서는 Silicium을 그냥 사용하지 않고 Thin Film형태로 변형해서 사용하고 있다. 이 Silicium Thin Film은 값이 저렴하면서도 효율적으로 태양전류를 태양광선에서 생산할 수 있게 하는 매우 기대가 큰 재료로 등장하고 있다.

  • PDF

레이저 조사에 따른 실리콘 솔라셀의 출력 특성 (Electric Power Charging of Silicon Solar Cells using a Laser)

  • 이후승;배한성;김성범;주윤재;김정오;노지환
    • 한국생산제조학회지
    • /
    • 제25권5호
    • /
    • pp.362-367
    • /
    • 2016
  • Recently, wireless charging systems have expanded their applications from household electrical appliances to outdoor activity devices. In wireless charging systems, solar cells have versatile advantages, such as abundant raw materials within the earth, reasonable prices of products, and highest power conversion efficiency. In this study, the photovoltaic effect between a silicon solar cell and a photon of infrared wavelength was simulated using a Shockley diode equation. A solar cell power charging system was then set up to: 1) clarify mechanisms of the charging interaction based on the photovoltaic effect with a laser source, and 2) verify interdependency of the parameters: laser settings and geometrical position between a solar cell and the laser. As was observed, the solar cell generates more power when the photon was irradiated uniformly, intensively, and vertically on the surface of the solar cell.

PC1D 시뮬레이션을 이용한 결정질 실리콘 태양전지의 도핑 프로파일 모델링 (The Doping Profile Modeling of Crystalline Silicon Solar Cell with PC1D simulation)

  • 최성진;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.149-153
    • /
    • 2011
  • The PC1D is widely used for modeling the properties of crystalline silicon solar cell. Optimized doping profile in crystalline silicon solar cell fabrication is necessary to obtain high conversion efficiency. Doping profile in the forms of a uniform, gaussian, exponential and erfc function can be simulated using the PC1D program. In this paper, the doping profiles including junction depth, dopant concentration on surface and the form of doping profile (gaussian, gaussian+erfc function) were changed to study its effect on electrical properties of solar cell. As decreasing junction depth and doping concentration on surface, electrical properties of solar cell were improved. The characteristics for the solar cells with doping profile using the combination of gaussian and erfc function showed better open-circuit voltage, short-circuit current and conversion efficiency.

  • PDF

온도에 따른 PV모듈의 출력에 영향을 미치는 요소 분석 (Analysis of Factor on the Temperature Effect on the Output of PV Module)

  • 임종록;우성철;정태희;민용기;원창섭;안형근
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.365-370
    • /
    • 2013
  • Generally, photovoltaic modules consist of glass, EVA, Solar Cell, back sheet and ribbon. But EVA, solar cell, ribbon affect electric output with temperature. EVA is a change in the transmittance of light from the sun. In addition, the solar cell output is decreased with temperature and the ribbon increases resistance. Transmittance and reflectance of glass and EVA were measured. In this paper, the characteristics of the components of PV module as EVA and Glass, ribbon were studied by variable temperature. effects on material properties investigated. As a result, glass is independent in temperature variation. EVA was the reduction 1~4% in transmittance. Solar cell decrease 0.469[%/$^{\circ}C$] in electric output by temperature variation. Other factors was controlled in solar cell..

Light Trapping in Silicon Based Tandem Solar Cell: A Brief Review

  • Iftiquar, Sk Md;Park, Hyeongsik;Dao, Vinh Ai;Pham, Duy Phong;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제4권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Among the various types of solar cells, silicon based two terminal tandem solar cell is one of the most popular one. It is designed to split the absorption of incident AM1.5 solar radiation among two of its component cells, thereby widening the wavelength range of external quantum efficiency (EQE) spectra of the device, in comparison to that of a single junction solar cell. In order to improve the EQE spectra further and raise short circuit current density ($J_{sc}$) an optimization of the tradeoff between the top and bottom cell is needed. In an optimized cell structure, the $J_{sc}$ and hence efficiency of the device can further be enhanced with the help of light trapping scheme. This can be achieved by texturing front and back surface as well as a back reflector of the device. In this brief review we highlight the development of light trapping in the silicon based tandem solar cell.

Shingled 모듈 적용을 위한 태양전지 전극 구조 최적화 (Optimization of Solar Cell Electrode Structure for Shingled Module)

  • 오원제;박지수;황수현;이수호;정채환;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.290-294
    • /
    • 2018
  • The shingled photovoltaic module can be produced by joining divided solar cells into a string of busbarless structure and arranging them in series and parallel to produce a module, in order to produce a high output per unit area. This paper reports a study to optimize solar cell electrode structure for shingled photovoltaic module fabrication. The characteristics of each electrode structure were analyzed according to the simulation program as follow: 80.62% fill factor in the six-junction solar cell electrode structure and 19.23% efficiency in the five-junction electrode structure. Therefore, the split electrode structure optimized for high-density and high-output shingled module fabrication is the five-junction solar cell electrode structure.

염료감응형 태양전지의 광전극 확장에 따른 광전특성 연구 (A Study on The Photoelectric Characteristics of Dye-sensitized Solar Cell according to Expanding Photo-electrode)

  • 서현웅;김미정;박제욱;김호성;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.305-308
    • /
    • 2007
  • The field of dye-sensitized solar cell (DSC) is being researched actively at present. Because DSC has several advantages to pass the limits of Si solar cells such as a low manufacturing expense, a simple manufacturing process and its transparency. A lot of researches are underway about materials and processes in the field of dye-sensitized solar cell but its structure has been fixed up as the sandwich structure that both edges are used as positive and negative terminals. But the structure as of present is a factor of decreasing efficiency because the more electrons are recombined the further distance from terminal, considering about the characteristic of dye-sensitized solar cell that electrons generated inside cell are moved by diffusion. In this study, we made experiment on expanding the terminal to shorten internal moving distance of electron and compared the results according to the variation of active area to find out the effect of this trial. As a result, we achieved about 15.5% improvement of maximum power and 0.5% improvement of efficiency from terminal-expanded dye-sensitized solar cell of $2cm^{2}$ active area and concluded that the increasing rate of efficiency is raised as the active area becomes wider.

  • PDF

CHARACTERISTICS OF LOW-TEMPERATURE PROCESSED DYE-SENSITIZED SOLAR CELL BY ELECTROCHEMICAL IMPEDANCE AND PHOTOCURRENT-PHOTOVOLTAGE TRANSIENT SPECTROSCOPY

  • Li, Yuelong;Lee, Doh-Kwon;Kim, Kyung-Kon;Ko, Min-Jae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.381-381
    • /
    • 2011
  • In this study, a TiO2 colloidal sol was synthesized by sol-gel process, which was used as a "glue" agent to enhance interconnection of TiO2 particles in low temperature process for plastic dye sensitized solar cell. The crystalline phase of this TiO2 glue is pure anatase with average particles size of 5 nm, which was characterized by powder X-ray diffraction and high revolution-TEM. The viscous alcoholic paste without any organic binder was prepared from the mixture of commercial P25 powder and glue. Paste composition and sintering process parameters were optimized for high photovoltaic performance based on low temperature process. The electrochemical impedance spectroscopy and photocurrent-photovoltage transient spectroscopy were also employed to investigate the mechanism of electron transport in this binder free TiO2 film system.

  • PDF