• 제목/요약/키워드: Solar battery

검색결과 367건 처리시간 0.021초

안정적인 태양광발전시스템의 설계를 위한 태양전지와 배터리 용량산정 방안 (Calculation of capacity of solar cell and battery for stable solar system design)

  • 이미영;이준하;이흥주;이우희
    • 한국산학기술학회논문지
    • /
    • 제6권5호
    • /
    • pp.396-400
    • /
    • 2005
  • 소규모 독립형 태양광발전시스템의 안정적인 설계를 위해서는 태양전지와 배터리 용량이 매우 중요한 요소이다. 태양전지 및 배터리의 용량산정이 잘못되면 시스템의 동작이 불안정해지고 잦은 고장의 원인이 된다. 따라서 본 논문에서는 안정적인 태양광발전시스템의 설계를 위해 부하특성을 고려한 태양전지와 배터리 용량산정 방안을 제시하였다.

  • PDF

배터리 내장형 초소형 태양광 장치용 PV MPPT 및 충방전 제어 알고리즘 (The PV MPPT & Charge and Discharge Algorithm for the Battery Included Solar Cell Applications)

  • 김승민;박봉희;최주엽;최익;이상철;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.69-75
    • /
    • 2013
  • To increase the efficiency of the photovoltaic, almost photovoltaic appliances are controlled by Maximum Power Point Tracking(MPPT). Existing most of the PV MPPT techniques have used power which multiplies sensed output current and voltage of the solar cell. However, these algorithms are unnecessarily complicated and too expensive for small and compact system. The other hand, the proposed MPPT technique is only one sensing of the MPPT converter's output current, so there is no need to insert another sensors of battery side. Therefore, this algorithm is simpler compared to the traditional approach and is suitable for low power solar system. Further, the novel proper charge/discharge algorithm for the battery with PV MPPT is developed. In this algorithm, there is CC battery charge mode and load discharge mode of the PV cell & battery dual. Also we design current control to regulate allowable current during the battery charging. The proposed algorithm will be applicable to battery included solar cell applications like solar lantern and solar remote control car. Finally, the proposed method has been verified with computer simulation.

효율적인 광전기화학적 태양에너지 전환과 저장을 위한 Solar Water Battery의 최적화 (Optimization of Solar Water Battery for Efficient Photoelectrochemical Solar Energy Conversion and Storage)

  • 고현주;박이슬
    • 청정기술
    • /
    • 제27권1호
    • /
    • pp.85-92
    • /
    • 2021
  • 태양에너지를 활용하여 전력을 생산하는 시스템인 Solar water battery는 광전기화학전지와 에너지저장시스템을 결합한 것으로 추가적인 외부 전압 없이 태양에너지의 전환과 저장을 동시에 할 수 있다. Solar water battery는 광전극, 저장전극 그리고 상대전극으로 구성되어 있고, 이들의 선택과 조합은 시스템의 성능과 효율에 있어 중요한 역할을 한다. 본 연구에서는 Solar water battery의 구성요소들을 변화시켜 시스템에 미치는 영향을 알고자 하였다. 상대전극이 방전 시 미치는 영향, 광전극과 저장전극의 전극 재료, 전해질의 종류에 따른 태양에너지 전환 효율과 저장 용량에 미치는 영향에 대해 연구하였다. 이들의 최적화된 구성(TiO2 : NaFe-PB : Pt foil)에서 15시간동안의 광조사 후의 방전 용량이 72.393 mAh g-1으로 시스템 구성 조건에 따라 광전환/저장 효율이 크게 영향을 받음을 확인 할 수 있었다. 또한, 유기 오염물질을 광전극 반응조내 전해질에 첨가하여 광전하를 효율적으로 분리시킴으로써 광전류 증가시켰으며, 이로 인해 저장용량이 향상되고, 동시에 오염물질도 분해시킬 수 있음을 확인하였다. 이처럼 Solar water battery는 추가적인 외부 전압이 필요없는 새로운 친환경 태양에너지 전환/저장 시스템이며, 나아가 수처리에도 활용할 수 있을 것으로 기대된다.

Compatibility of Lithium ion Phosphate Battery in Solar off Grid Application

  • Lakshmanan, Sathishkumar;Vetrivel, Dhanapal;Subban, Ravi;R., Saratha;Nanjan, Sugumaran
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.472-478
    • /
    • 2022
  • Solar energy harvesting is practiced by various nations for the purpose of energy security and environment preservation in order to reduce overdependence on oil. Converting solar energy into electrical energy through Photovoltaic (PV) module can take place either in on-grid or off-grid applications. In recent time Lithium battery is exhibiting its presence in on-grid applications but its role in off-grid application is rarely discussed in the literature. The preliminary capacity and Peukert's study indicated that the battery quality is good and can be subjected for life cycle test. The capacity of the battery was 10.82 Ah at 1 A discharge current and the slope of 1.0117 in the Peukert's study indicated the reaction is very fast and independent on rate of discharge. In this study Lithium Iron Phosphate battery (LFP) after initial characterization was subjected to life cycle test which is specific to solar off-grid application as defined in IEC standard. The battery has delivered just 6 endurance units at room temperature before its capacity reached 75% of rated value. The low life of LFP battery in off-grid application is discussed based on State of Charge (SOC) operating window. The battery was operated both in high and low SOC's in off-grid application and both are detrimental to life of lithium battery. High SOC operation resulted in cell-to-cell variation and low SOC operation resulted in lithium plating on negative electrode. It is suggested that to make it more suitable for off-grid applications the battery by default has to be overdesigned by nearly 40% of its rated capacity.

Single Sensor Charging System with MPPT Capability for Standalone Streetlight Applications

  • Osman, Siti Rahimah;Rahim, Nasrudin Abd.;Selvaraj, Jeyraj;Al-Turki, Yusuf A.
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.929-938
    • /
    • 2015
  • Maximum power point tracking (MPPT) and battery charging control are two important functions for a solar battery charger. The former improves utilization of the available solar energy, while the latter ensures a prolonged battery life. Nevertheless, complete implementation of both functions can be complex and costly, especially for low voltage application such as standalone street lamps. In this paper, the operation of a solar battery charger for standalone street light systems is investigated. Using only one voltage sensor, the solar charger is able to operate in both MPPT and constant voltage (CV) charging mode, hence providing high performance at a low cost. Using a lab prototype and a solar simulator, the operation of the charger system is demonstrated and its performance under varying irradiance is validated.

태양광발전 연계 가정용 배터리 에너지저장장치의 블랙박스 개발 (Development of Black Box for Home Battery Energy Storage System Connected with Solar Energy Generation)

  • 김상동;박지호;김동완
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1295-1302
    • /
    • 2016
  • In this paper, a black box, which is provided the reliability and user safety of home battery energy storage system connected with solar energy generation, is developed. In the developed scheme, a status and diagnosis data of battery management system, power conditioning system, solar energy generation and grid is measured. This status and diagnosis data is stored and displayed in the developed black box. In addition, this status and diagnosis data is stored and displayed in a monitoring system and a smart phone of user. A performance evaluation of the developed black box is carried out using emulator of home battery energy storage system connected with solar energy generation. Consequently, the developed black box is proved its superiority of the reliability and user safety.

위성 배터리 충전을 위한 태양전력조절기의 제어기 고장 분석 (Failure Analysis of Solar Array Regulator Controller for Charging Satellite Battery)

  • 양정환;박정언;윤석택
    • 한국위성정보통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.67-71
    • /
    • 2017
  • 저궤도 인공위성은 전기 에너지 원으로 주로 태양전지 배열기를 사용한다. 태양전지 배열기는 인공위성이 식구간에 들어가면 전기 에너지를 발생시키지 못하므로, 식구간에서는 배터리가 인공위성에 전기 에너지를 공급한다. 또한 태양전지 배열기는 동작 전압에 따라 출력하는 전력이 변하며, 최대 전력을 출력하는 최대전력점이 존재한다. 일광구간에서 태양전지 배열기가 최대전력을 출력하여 위성에 전기 에너지를 공급하고 남은 에너지로 배터리를 충전할 수 있도록 태양전력 조절기기가 필요하다. 태양전력 조절기의 입력에는 태양전지 배열기가 연결되고, 출력에는 배터리가 연결된다. 태양전력 조절기는 안정적인 동작을 위해 2 of 3 Hot Redundant로 동작한다. 즉, 3개의 DC-DC 컨버터가 하나의 태양전력 조절기를 구성하며, 이 DC-DC 컨버터 하나가 고장이 발생하더라도 태양전력 조절기는 안정적으로 동작한다. 본 논문에서는 태양전력 조절기 동작 중 DC-DC 컨버터의 제어기에 고장이 발생한 순간 태양전력 조절기가 어떻게 동작하는지 분석하고, 배터리와 태양전지 배열기에 어떠한 영향을 미치는가에 대하 분석한다.

태양광 시뮬레이터와 PCS를 이용한 배터리 방전시스템 구성 (Battery Discharge System Configuration using Photovoltaic Simulator and PCS)

  • 정다움;박성민;박성미;박성준;문승필
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.491-498
    • /
    • 2020
  • Recently, In the production line of batteries, charge and discharge tests are essential to verify battery characteristics. In this case, the battery charging uses a unidirectional AC/DC converter capable of output voltage and current control, and the discharge uses a resistive load. Since this method consumes energy during discharge, it must be replaced with a bi-directional AC/DC converter system capable of charging and discharging. Although it is difficult to replace the connected inverter part of the bi-directional AC/DC converter system due to the high cost, the spread of the solar-connected inverter rapidly increases as the current solar supply business is activated, and thereby the solar-connected type Inverter prices are plunging. If it can be used as a power converter for battery discharge without program modification of the solar-powered inverter, it will have competition. In this paper, propose a new battery discharge system using a combination of a photovoltaic DC/DC simulator and photovoltaic PCS using a battery to be used as a power converter for battery discharge without program modification of a low-cost photovoltaic inverter. In addition, propose an optimal solar characteristic curve for the stable operation of PCS. The validity of the proposed system was verified using a 500[W] class solar DC/DC simulator and a solar PCS prototype.

Regulated Peak Power Tracking (RPPT) System Using Parallel Converter Topologies

  • Ali, Muhammad Saqib;Bae, Hyun-Su;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.870-879
    • /
    • 2011
  • Regulated peak power tracking (RPPT) systems such as the series structure and the series-parallel structures are commonly used in satellite space power systems. However, these structures process the solar array power or the battery power to the load through two cascaded regulators during one orbit cycle, which reduces the energy transfer efficiency. Also the battery charging time is increased due to placement of converter between the battery and the solar array. In this paper a parallel structure has been proposed which can improve the energy transfer efficiency and the battery charging time for satellite space power RPPT systems. An analogue controller is used to control all of the required functions, such as load voltage regulation and solar array stabilization with maximum power point tracking (MPPT). In order to compare the system efficiency and the battery charging efficiency of the proposed structure with those of a series (conventional) structure and a simplified series-parallel structure, simulations are performed and the results are analyzed using a loss analysis model. The proposed structure charges the battery more quickly when compared to the other two structures. Also the efficiency of the proposed structure has been improved under different modes of solar array operation when compared with the other two structures. To verify the system, experiments are carried out under different modes of solar array operation, including PPT charge, battery discharge, and eclipse and trickle charge.

태양광 시스템에 적용한 배터리 커패시터의 전기적 특성에 관한 연구 (A Study on the Electrical Characteristics of Battery Capacitor Applied to Photovoltaic Power System)

  • 맹주철;윤중락
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1740-1744
    • /
    • 2017
  • This paper describes the preparation and characteristics of a battery capacitor and module for solar power system. A cylindrical 30,000F battery capacitor ($60{\times}138mm$) was assembled by using the $LTO(Li_4Ti_5O_{12})$ electrode as an anode and $NMC(LiNiMnCoO_2)-LCO(LiCoO_2)$ as a cathode. The battery capacitor has reduced energy density and power density under high CC(constant current) and CP(constant power) conditions. Battery capacitor module (16V, 11Ah) was fabricated using an asymmetric hybrid capacitor with a capacitance of 30,000F. In order to determine the characteristics of the battery capacitor Module for solar power system, battery capacitor cells were connected in series with active balancing circuit. As a result of measuring the 100w LED lamp, it was discharged at the voltage of 15V~10V, and the compensation time at discharge was measured to be about 4979s. Experimental results show that it can be applied to applications related to solar power system by applying battery capacitor module.