• 제목/요약/키워드: Solar air Heating System

검색결과 216건 처리시간 0.021초

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제20권6호
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

A Development of Automation System and a Way to use Solar Energy System Efficiently in Greenhouse(1) - Study on temperature variation of soil heating in greenhouse - (시설원예용 태양열 시스템의 효율적 이용과 자동화 장치개발(1) - 시설재배시 지중가온의 온도변화 연구 -)

  • 김진현;김철수;명병수;최중섭;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • 제7권1호
    • /
    • pp.15-24
    • /
    • 1998
  • The greenhouse temperature controls in general have been managed by the above-ground part environment, But the temperature of root zone was known very important factor for the 9rofth and the yield of vegetables in greenhouse. The purpose of this study is to develop a good method for cultivation using solar energy which can apply warming soil and to develop the greenhouse soil temperature automatic control system. Followings are summary of this study:1 When the greenhouse inner temperature changes were about 24$^{\circ}C$ during a day in October, the temperature of non-warmed soil was differenced 6$^{\circ}C$ in the depth 10cm and 3$^{\circ}C$ in the depth 20cm. 2. When water supply temperature was kept at 40, 50 and 6$0^{\circ}C$, the lowest soil temperature in the depth of 10cm is 2$0^{\circ}C$ and that of 20cm was 23$^{\circ}C$. and when the water supply temperature was over 4$0^{\circ}C$, the space heating temperature did not affect the temperature variation of soil. 3. In comparison with conditions of the warmed and non-warmed soil, when the water supply temperature is 28$^{\circ}C$, soil temperatures had the high temperature of 4$0^{\circ}C$~7$^{\circ}C$ in the depth of 10cm to 20 cm. 4. The line of boundary area was appeared in the depth of 15~20cm, 13~19cm and 12~17cm. when the water supply temperature was 4$0^{\circ}C$, 5$0^{\circ}C$ and 6$0^{\circ}C$. 5. When th inner greenhouse air temperature is maintained over 11$^{\circ}C$ and the water supply temperature is supported 28$^{\circ}C$, the lowest temperature is kept up over 2$0^{\circ}C$.

  • PDF

A Study on development of Resourse - saving site Planning techniques based on utilization of Ecosystem - Focused on Housing site - (생태계를 이용한 자원절약형 단지계획기법 개발에 관한 연구 - 주거단지를 중심으로-)

  • 이영무
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제18권2호
    • /
    • pp.111-125
    • /
    • 1990
  • Korea is a nation with poor natural resources. There is a greats need to save resources that are running out in fast face. The purpose of this thesis is to bind the means to save rosources in housing site, especially in highrise apartment. The reason why the high-rise apartments are chosen as a case is 7hat the high-rise is becoming the major form of dwelling in most urban areas. As a tool of saving the ecological way is chosen because ecological energy is free, clean and unlimited. The resources to be saved are divided into two categories, namely energy and non - energy resources as water, land and food. The contents of the thesis are comprised of 4 chapters. The early chaspters are devoted to the understanding of the ecosystem and problems of current energy consumption in the apartment. It is fellowed by the introduction of the hypothesis that can possibly save reouruces. The hypothesis are then transformed into the actual theories through verification, to be established as the new techniques of the site planning. The ecosystem is the functional relationship between the living organisms and their physical surroundings. The living organisms are the plants that produce, animals that consume and bacterias that decompose. They live in the environment which consists of the three worlds of atmosphere, hydrosphere and lithosphere. The whole system is activated by the solar energy that turns the inorganic mallet- into the living organism and back to the inorganic. It is the recycling principle of the ecosystem. The elements of ecosystem that fan be unilimited as the tools of resources -saving are the sun, wind, water, soil, plant and waste. They are unlimited sources of energy. free of pollution and cheap in price. Each of these ecological elements Provide the opportunities that can save the heating fuel, air conditioning energy, water resource, land and food. The ecological approch should be pursued actively in this age of short resources and growing pollution. In the scale of total energy consumption the housing takes the second position next to the industrial use. It is followed by the transportation which shows for less consumption than former two.

  • PDF

A Study on An Integrated GEO/TES with Geothermal Heat Exchanger and Thermal Ice Storage (지중열 교환기와 빙축열조(Thermal Ice Storage)를 연계시킨 통합 지중열-빙축열조 시스템(Integrated GEO/TES))

  • Lohrenz ED.;Hahn Jeongsang;Han Hyuk Sang;Hahn Chan;Kim Hyoung Soo
    • Economic and Environmental Geology
    • /
    • 제38권6호
    • /
    • pp.717-729
    • /
    • 2005
  • Peak cooling load of large buildings is generally greater than their peak heating load. Internal and solar heat gains are used fur selection of adquate equipment in large building in cold winter climate like Canada and even Korea. The cost of geothermal heat exchanger to meet the cooling loads can increase the initial cost of ground source heat pump system to the extend less costly conventional system often chosen. Thermal ice storage system has been used for many years in Korea to reduce chiller capacity and shift Peak electrical time and demand. A distribution system designed to take advantage of heat extracted from the ice, and use of geothermal loop (geothermal heat exchanger) to heat as an alternate heat source and sink is well known to provide many benifits. The use of thermal energy storage (TES) reduces the heat pump capacity and peak cooling load needed in large building by as much as 40 to $60\%$ with less mechanical equipment and less space for mechanical room. Additionally TES can reduce the size and cost of the geothermal loop by 1/3 to 1/4 compared to ground coupled heat pump system that is designed to meet the peak heating and cooling load and also can eliminate difficuties of geothermal loop installation such as space requirements and thermal conditions of soil and rock at the urban area.

Composting Effectiveness of A Sundry System with A Bin-type Composter for Recyle of Animal Wastes (축분뇨처리를 위한 Bin형 부숙조- Sundry 시스템의 퇴비화효율 평가)

  • 최홍림;김현태;정영윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제35권2호
    • /
    • pp.92-103
    • /
    • 1993
  • A sunday system with a horizontal bin-type composter was constructed and operated to evaluate its composting performance for four days for each test in October, 1992. A sundry system is one of popular systems for composting livestock manure, of which main benefit is to utilize unlimited, clean, and free solar radiation. A rectangular concrete bin(composter) with dimension of 300cm(length) X90cm(width) X60cm(height) was bedded alternatively with four lanes of aeration pipes and heating pipes, and was insulated at three walls with 50mm styrofoam. Each aeration pipe of a diameter of 25mm had 4mm perforated holes at every 15cm longitudinally, and supplied air of about 2m$^3$/min to the composter to maintain aerobic condition . A stirrer rotating at 1 rpm made one round trip every 20 minutes on the conveying chain along the the length of the composter. Five tests (Test 1~Test 5) were implemented to evaluate the composting effectiveness of a sundry system with a horizontal bin-type composter. Treatments of two levels of the mixture ratio of swine manure and paper sludge cakes(manure : paper sludge cakes= 1 : 4 and 1 : 2) and two levels of the water content(W/C ; 70% and 50%) were made to test the significance of the physicochemical properties for decomposition of the mixture materials. Temperature, C/N ratio, water content, microbial activity of the composting materials were taken measurements to evaluate its performance with the lapse of composting time for tests. A small-scale sundry system with a bin-type composter did not appear to be an appropriate system for composting livestock manure. Since heat generation by the composting materials could not overcome heat loss due to areation in a small-scale composter, a proper thermal enviroment could not be maintained to propagate massively thermopilic microorganism relatively in a short period of time. Different from the result of Chol et al.(1992) 6), a temperature variation of the composting materials did not show the peak clearly and C/N ratio didn't lower with time as expected. Mesophilic microoragnism seemed to play an important role for decomposition of the mixture materials. A sundry system with a bin-type composter may be good for a large-scale livestock farm household which may produce enough animal manure. Therefore a decision should be made very carefully to choose a system for composting livestock waste.

  • PDF

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제40권5호
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.