• 제목/요약/키워드: Solar activity

검색결과 354건 처리시간 0.026초

VARIATIONS OF THE SOLAR FLARE ENERGY SPECTRUM OVER TWO ACTIVITY CYCLES (1972 - 1995)

  • KASINSKY V. V.;SOTNIKOVA R. T.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.315-316
    • /
    • 1996
  • Based on X-ray (1-8 ${\AA}$) flux data for 1972-1995 the integral spectra of solar flare energy were computed. It has been shown that the spectral index $\beta$ of the integral energy spectrum (IES) vanes systematically with the 11-year cycle phase. The interval of $\beta$-variations (0.47 <$\beta$<1) is characteristic of UV-Cet stars. The maximum energy of the X-ray flares does not exceed $10^{32}$ erg.

  • PDF

일메나이트 상에서 광화학반응에 의한 유기물의 분해 (Decomposition of Organic Compound by Photo-Chemical Reaction on Ilmenite)

  • 최임규;하백현
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.39-45
    • /
    • 1988
  • Photo-decomposition experiments to produce hydrogen from organic compound such as alcohols and organic acids were investigated using the Korean natural ilmenite, which was used as ore itself as well as the calcined in vacuum. The decomposition activities of alcohol on ore (30-60 mesh) which was not calcined did not decrease even if it was repeatedly used. But crushed ore which had newly formed ilmenite surface revealed enhanced activities. The ilmenite powder calcined in vacuum showed 3-8 times higher activies than the ore powder itself and also the decomposition activity of formic acid was much higher than that of alcohols.

  • PDF

Does Correction Factor Vary with Solar Cycle?

  • Chang, Heon-Young;Oh, Sung-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.97-101
    • /
    • 2012
  • Monitoring sunspots consistently is the most basic step required to study various aspects of solar activity. To achieve this goal, the observers must regularly calculate their own correction factor $k$ and keep it stable. Relatively recently, two observing teams in South Korea have presented interesting papers which claim that revisions that take the yearly-basis $k$ into account lead to a better agreement with the international relative sunspot number $R_i$, and that yearly $k$ apparently varies with the solar cycle. In this paper, using artificial data sets we have modeled the sunspot numbers as a superposition of random noise and a slowly varying background function, and attempted to investigate whether the variation in the correction factor is coupled with the solar cycle. Regardless of the statistical distributions of the random noise, we have found the correction factor increases as sunspot numbers increase, as claimed in the reports mentioned above. The degree of dependence of correction factor $k$ on the sunspot number is subject to the signal-to-noise ratio. Therefore, we conclude that apparent dependence of the value of the correction factor $k$ on the phase of the solar cycle is not due to a physical property, but a statistical property of the data.

SUNSPOT MOTIONS ASSOCIATED WITH THE 3B/X1.5 SOLAR FLARE OF 13 MAY 1981

  • WANG JIA LONG;ZHANG GUIQING;MA GUANYI;YUN HONG SIK
    • 천문학회지
    • /
    • 제29권2호
    • /
    • pp.217-221
    • /
    • 1996
  • We have examined morphological change and movements of individual sunspots within a sunspot group in association with a large solar flare activity (3B/X1.5) appeared on 13 May 1981. For this purpose we measured distance among spots during the period before and after the flare activity and estimated the average velocity of their movement. Our main results are as follows: (1) The longitudinal displacement among sunspots are generally greater than the latitudinal displacement. (2) During the period the spots moved with an average velocity of 1.2 km/s in longitude and 0.86 km/s in latitude. (3) The most notable change took place in the central part placed between the two ribbons of the flare.

  • PDF

Ionospheric F2-Layer Variability in Mid Latitude Observed by Anyang Ionosonde

  • Kwak, Young-Sil;Kumar, Phani;Cho, Il-Hyun;Cho, Kyung-Suk;Kim, Khan-Hyuk;Hong, Sun-Hak
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.38.2-38.2
    • /
    • 2009
  • The ionosphere displays variations on a wide variety of time-scales, ranging from few hours to days and up to solar cycles and even more. In this paper, we examine the ionospheric F2-layer variability in mid latitude by analyzing the foF2 and hmF2 from the Anyang ionosonde. Especially, we investigate how ionospheric semi-annual and seasonal anomalies vary with local time and solar activity. In addition to the characterization of the ionospheric semi-annual an seasonal anomalies, our study extends to the investigation of the relationship between ionospheric variability and geomagnetic activity. Finally we also discuss the coupling between ionospheric F2-layer variability and thermospheric neutral composition.

  • PDF

Statistical studies of trough at middle latitudes observed by DMSP F15

  • 박사라;길효섭;김관혁
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.126.1-126.1
    • /
    • 2012
  • The middle-latitude ionization trough, the plasma density depletion in the subauroral region, has been extensively studied since its discovery in the 1960s. Our knowledge of the variability of the trough is mostly based on the observations in the northern hemisphere. Recently, the COSMIC observations enabled the investigation of the trough in both hemispheres at all local time. However, the investigation was limited to the period of the low solar activity. In this study, we investigate the variability of the trough location and morphology with local time, solar cycle, magnetic activity, and interplanetary magnetic field. For this purpose, we analyze the DMSP F15 data acquired during 2000-2010.

  • PDF

DETECTION AND RESTORATION OF NON-RADIAL VARIATION OVER FULL-DISK SOLAR IMAGES

  • Yang, Yunfei;Lin, Jiaben;Feng, Song;Deng, Hui;Wang, Feng;Ji, Kaifan
    • 천문학회지
    • /
    • 제46권5호
    • /
    • pp.191-200
    • /
    • 2013
  • Full-disk solar images are provided by many solar telescopes around the world. However, the observed images show Non-Radial Variation (NRV) over the disk. In this paper, we propose algorithms for detecting distortions and restoring these images. For detecting NRV, the cross-correlation coefficients matrix of radial profiles is calculated and the minimum value in the matrix is defined as the Index of Non-radial Variation (INV). This index has been utilized to evaluate the H images of GONG, and systemic variations of different instruments are obtained. For obtaining the NRV's image, a Multi-level Morphological Filter (MMF) is designed to eliminate structures produced by solar activities over the solar surface. Comparing with the median filter, the proposed filter is a better choice. The experimental results show that the effect of our automatic detection and restoration methods is significant for getting a flat and high contrast full-disk image. For investigating the effect of our method on solar features, structural similarity (SSIM) index is utilized. The high SSIM indices (close to 1) of solar features show that the details of the structures remain after NRV restoring.

달 탐사 통신 시스템에서 태양 폭발의 영향 (The Effect of Solar Burst in Communications System for Lunar Exploration)

  • 김상구;홍희진;오장훈;윤동원;현광민
    • 한국정보통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.309-316
    • /
    • 2013
  • 달 탐사 통신 시스템에 영향을 미치는 요소 중 하나인 태양활동은 오는 2013년 가을에 11년 주기로 나타나는 태양 활동 극대기를 맞이하며, 이에 따라 태양 폭발 빈도와 강도가 증가할 것으로 예상되고 있다. 태양 폭발은 지구 자기권에 영향을 미쳐 과학, 방송, 통신, 군사 위성 또는 탐사선 등의 오작동, 통신 두절, 장비 고장 등을 발생시키는 원인이 될 수 있으며, 이러한 문제점은 막대한 물리적, 경제적 손실을 가져올 수 있다. 따라서 태양 폭발이 달 탐사선에 미치는 영향에 대한 분석을 수행하여 예상되는 손실을 최소화해야 할 것이다. 본 논문에서는 탐사선의 생존성을 높이고 안정적인 통신 채널 운용을 위하여 태양 폭발에 따른 지상국 - 달 탐사선 간의 통신 모델과 그 성능을 분석한다.

2006년 발생한 고속 태양풍과 관련된 정지궤도에서의 상대론적 전자 증가 이벤트 (Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006)

  • 이성은;황정아;이재진;조경석;김관혁;이유
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권4호
    • /
    • pp.439-450
    • /
    • 2009
  • 2006년 상반기동안 GOES 10에 의해 관측된 > 2MeV의 전자에너지 채널에서 반복되는 상대론적 전자 증가 이벤트(GREE, Geosynchronous Relativistic Electron Event)가 4회 있었다. 이 현상들은 모두 코로나 구멍(Coronal hole)에서부터 나온 고속 태양풍(HSS, High Speed Solar Wind Stream)과 관련된 것으로 여겨진다. 약 27일 주기를 갖는 이 4회의 전자 증가 현상은 플럭스가 점점 증가하는 형태를 보인다. 현재까지 알려진 상대론적 전자 증가 현상의 주요 원인으로는 다음의 요소들이 언급되어 왔다: (1) 코로나 구멍과 관련된 태양풍 속도, (2) Pc5 ULF 파동, (3) 행성간 자기장(IMF, Interplanetary Magnetic Field) Bz의 남쪽 성 분, (4) 자기 부폭풍(substorm)의 발생, (5) 증가된 휘슬러 모드 코러스 파동(whistler mode chorus wave)과 (6)동압력(dynamic pressure). 따라서 이 논문에서는 2006년 상반기 동안 앞에서 언급한 6가지 현상 들을 분석하여 어느 요소가 상대론적 전자 증가 현상의 플럭스와 가장 가까운 연관성이 있는지 알아보고자 한다.