• 제목/요약/키워드: Solar Reflection

Search Result 220, Processing Time 0.026 seconds

Analysis of the Spectrum Characteristics of Etched Glass Surface by Incident Angle (입사각에 따른 에칭 기판의 분광특성분석)

  • Kim, Haemaro;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1077-1081
    • /
    • 2019
  • Lights that enter the surface of a solar cell cannot be absorbed inside all of the solar cells, and some of it is reflected off the surface of the substrate, resulting in loss. Because of this, many studies are underway to reduce reflective losses on the surface of substrates or to steam the generated charge inside the solar cell. In this paper, surface treatment for forming a rough surface by wet etching the surface of a glass substrate is advanced, and structural characteristics of the rough surface are analyzed. Then, spectral characteristics by changing the angle of the glass substrate to which light enters the company are analyzed. When the light entering the company is investigated on a etched surface, it is confirmed that the probability of re-absorbing the light inside the glass substrate by multiple reflection is increased. When entering the light while changing the angle of the glass substrate, the transmission and reflection performance of the light are not changed.

Process Optimization of the Contact Formation for High Efficiency Solar Cells Using Neural Networks and Genetic Algorithms (신경망과 유전알고리즘을 이용한 고효율 태양전지 접촉형성 공정 최적화)

  • Jung, Se-Won;Lee, Sung-Joon;Hong, Sang-Jeen;Han, Seung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2075-2082
    • /
    • 2006
  • This paper presents modeling and optimization techniques for hish efficiency solar cell process on single-crystalline float zone (FZ) wafers. Among a sequence of multiple steps of fabrication, the followings are the most sensitive steps for the contact formation: 1) Emitter formation by diffusion; 2) Anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); 3) Screen-printing for front and back metalization; and 4) Contact formation by firing. In order to increase the performance of solar cells in terms of efficiency, the contact formation process is modeled and optimized using neural networks and genetic algorithms, respectively. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time and fabrication costs. The experiments were designed by using central composite design which consists of 24 factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the fabricated solar cell is modeled using neural networks. Established efficiency model is then used for the analysis of the process characteristics and process optimization for more efficient solar cell fabrication.

A Characteristics of the Applied SOG Lens for the CPV Module (SOG렌즈를 적용한 집광형 태양전지모듈 특성)

  • Jeong, Byeong-Ho;Lee, Kang-Yoen;Park, Ju-Hoon;Moon, Eun-Ah;Lee, Sang-Hyun;Kim, Dae-Gon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • CPV system in the desert areas or areas near the equator, as is suitable for high-temperature region. As compared to silicon solar cells, CPV system have a high proportion of a BOS (balance of system). Solar cells because of its low proportion when designing a module technology is applied in a variety of ways. Applied to the CPV system is classified into two kinds of optical technology. One of those using fresnel lens uses refraction of light energy. The other is a mirror reflection of the structure using sprays. Both of these two ways to condense the sun to collect solar cell is a form of light. And goals by using a small solar cell materials is to produce more energy. In this paper, suitable for a domestic environment, with the aim CPV Manufacturing Technology, built on a variety of modular process technology to the development of a prototype performance analysis was carried out. In particular, silicone coated on the glass by the method of implementation of the Fresnel lens SOG(Silicon on glass) by applying the lens to absorb the solar spectrum was broad. In addition to, for the analyze to characteristics of the CPV module, developed CPV module performance and generating characteristics studied. These related technology through research and development of high-performance multi-junction solar cells, modules, development of concentrating solar power systems to facilitate the growth of the market is considered to be.

Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process (도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선)

  • Choi, Sung-Jin;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • Lee, Eun-U;Park, Sun-Yong;Lee, Sang-Hwan;Kim, U-Nam;Jeong, U-Jin;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

Photovoltaic Performance of Crystalline Silicon Recovered from Solar Cell Using Various Chemical Concentrations in a Multi-Stage Process (습식 화학 공정에 의한 태양전지로부터 고순도 실리콘 회수 및 이를 이용한 태양전지 재제조)

  • Noh, Min-Ho;Lee, Jun-Kyu;Ahn, Young-Soo;Yeo, Jeong-Gu;Lee, Jin-Seok;Kang, Gi-Hwan;Cho, Churl-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.697-702
    • /
    • 2019
  • In this study, using a wet chemical process, we evaluate the effectiveness of different solution concentrations in removing layers from a solar cell, which is necessary for recovery of high-purity silicon. A 4-step wet etching process is applied to a 6-inch back surface field(BSF) solar cell. The metal electrode is removed in the first and second steps of the process, and the anti-reflection coating(ARC) is removed in the third step. In the fourth step, high purity silicon is recovered by simultaneously removing the emitter and the BSF layer from the solar cell. It is confirmed by inductively coupled plasma mass spectroscopy(ICP-MS) and secondary ion mass spectroscopy(SIMS) analyses that the effectiveness of layer removal increases with increasing chemical concentrations. The purity of silicon recovered through the process, using the optimal concentration for each process, is analyzed using inductively coupled plasma atomic emission spectroscopy(ICP-AES). In addition, the silicon wafer is recovered through optimum etching conditions for silicon recovery, and the solar cell is remanufactured using this recovered silicon wafer. The efficiency of the remanufactured solar cell is very similar to that of a commercial wafer-based solar cell, and sufficient for use in the PV industry.

Investigation of varied suface passivation layers for solar cells (태양전지를 위한 다양한 표면 패시베이션(passivation) 막들의 연구)

  • Lee, Ji-Youn;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.90-93
    • /
    • 2004
  • In this work, we have used different techniques for the surface passivation: conventional thermal oxidation (CTO), rapid thermal oxidation (RTO), and plasma-enhanced chemical vapour deposition (PECVD). The surface passivation qualities of eight different single and combined double layer have been investigated both on the phosphorus non-diffused p-type FZ silicon and on phosphorus diffused emitter of 100 ${\Omega}/Sq$ and 40 ${\Omega}/Sq$. In the single layer, silicon dioxide $(SiO_2)$ passivates good on the emitter while silicon nitride (SiN) passivates better than on the non-diffused surface. In the double layers, CTO/SiN1 passivates very well both on non-diffused surface on the emitter. However, RTO/SiN1 and RTO/SiN2 stacks are more suitable for surface passivation in solar cells caused by a relatively good passivation qualities and the low optical reflection. Applying these stacks in solar cells we achieved 18.5 % and 18.8 % on 0.5 ${\Omega}$ cm FZ-Si with planar and textured front surface, respectively. The excellent open circuit voltage $(V_{oc})$ of 675.6 mV is obtained the planar cell with RTO/SiN stack.

  • PDF

CPV module characteristics using the secondary reflect mirror (2차 집광부에 반사형 구조를 적용한 CPV모듈)

  • Jeong, Byeong-Ho;Mustafizu, Mustafizul;Lee, Kang-Yeon;Kim, Nam-Oh;Choi, Nak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1080-1081
    • /
    • 2015
  • CPV system in the desert areas or areas near the equator, as is suitable for high-temperature region. As compared to silicon solar cells, CPV system have a high proportion of a BOS (balance of system). Solar cells because of its low proportion when designing a module technology is applied in a variety of ways. Applied to the CPV system is classified into two kinds of optical technology. One of those using fresnel lens uses refraction of light energy. The other is a mirror reflection of the structure using sprays. Both of these two ways to condense the sun to collect solar cell is a form of light. And goals by using a small solar cell materials is to produce more energy. This research proposes rational design approach to calculate proper system capacity in consideration of the aforementioned factors in CPV system.

  • PDF

A Study on Solar Reflectance of Cool-Roof Coating Material with Heat Barrier and Waterproofing Performance According to Color Type (차열 및 방수성능을 갖는 쿨루프 도막재의 색상별 일사반사율 평가 연구)

  • Oh, Sang-Keun;Lee, Tae Yang;Park, Jin-Sang;Kim, Dong-Bum;Park, Wan-Goo;Choi, Su-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.251-252
    • /
    • 2018
  • Cool roof coating materials generally use white color which has the highest reflectance, but it is a tendency to apply various colors because it can cause glare and fatigue of a nearby building user due to the urban beauty and high reflection. This study when applying color diversity material cool roof coating was carried out as a basic research for the degree of solar radiation reflectance change. Experiment result. As a result of the measurement of the reflectance of each specimen, white showed the best reflectance in the near infrared region, and black had the lowest reflectance. Also, in case of brown, it was confirmed that the reflectance of solar radiation in the near extrinsic region is lower than that of gray.

  • PDF

Solution-Processed Anti Reflective Transparent Conducting Electrode for Cu(In,Ga)Se2 Thin Film Solar Cells (CIGS 박막태양전지를 위한 반사방지특성을 가진 용액공정 투명전극)

  • Park, Sewoong;Park, Taejun;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.131-135
    • /
    • 2020
  • Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters - the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT - to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.