• Title/Summary/Keyword: Solar Power

Search Result 2,887, Processing Time 0.029 seconds

Analysis of Slope Characteristics Around the Location of Solar Power Plants in Gangwon Province, South Korea (강원 지역 산지 태양광 발전시설이 설치된 지역의 사면특성 분석)

  • Beomjun Kim;Jiho Kim;Yongcheol Park;Chanyoung, Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.33-40
    • /
    • 2023
  • To analyze the slope characteristics of solar power plant installation region in Gangwon province, the installation status of solar power plant in Gangneung and Wonju city were investigated using GIS technique and satellite map. The solar power plant installation of Gangneung and Wonju city is 36 and 48 regions. Through topographical data of solar power plant installation region, a database for area, slope inclination, and elevation was construced. Based on the database, the slope characteristics of solar power plant installation region in Gangneung and Wonju city was analyzed. The results showed that the slope of Wonju city has a relatively higher slope inclination than Gangneung city. In addition, Gangneng and Wonju cities have many regions with maximum inclination of 15° and 34° or more within the solar power plant.

Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data (전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여)

  • Chae-Yeon Shim;Gyeong-Min Baek;Hyun-Su Park;Jong-Yeon Park
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

Maximum power tracking Strategy of a Solar Cell using ZVCS converter (ZVCS 컨버터를 이용한 태양전지 최대전력 검출법)

  • Kwak, Dong-Kurl;Jun, Hyun-Kyu;Kim, Jong-Min;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1032-1034
    • /
    • 2001
  • As well known, a solar cell has an optimal operating point to be able to get the maximum power $P_{max}$. So, many $P_{max}$ tracking controllers using the line voltage of a solar cell have been popularly used. But it may vary depending on the miss match between the solar cell output and the load. In this paper, we investigate the possibilities of $P_{max}$ control using the current tracking controller and the output voltage and the output current instead of the solar cell output power. And we also examine about the optimal power converter using ZVCS step up and down chopper circuit to operate the solar cell at an optimal voltage using these variables. And then, we show some experimental results to confirm the successful operation.

  • PDF

Electrical Characteristics of PV Module According to Optical Characteristics of Back-sheet (PV모듈에서 후면Sheet의 광학적 특성에 따른 전기적 출력 특성)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.42-47
    • /
    • 2008
  • In this paper, we analyze the electrical characteristics of PV depending on distance among solar cells before and after lamination process. From the result, the PV module's maximum power increases about 3.37% when solar cells's distance is 10mm. And the maximum power increases up to 8.42% when solar cells's maximum distance is 50mm. It is assumed that PV module's surface temperature decreases because of increasing distance between solar cells that would give high power generation. Also, short distance between solar cell and frame result in contamination on glass. When considering reduced maximum power caused by contaminant, from that. we can fabricated PV module of lower cost with high performance.

  • PDF

Batteryless Receiver using Solar Cells for Visible Light Communication (Solar Cell을 응용한 배터리 없는 가시광 통신용 수신기)

  • Jeong, You-Jin;Shin, Jung-Min;Han, Sang-Kyoo;Sakong, Suk-Chin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.66-67
    • /
    • 2017
  • 본 논문은 Solar Cell을 응용하여 통신기능과 함께 전원공급이 가능한 배터리 없는 가시광 통신용 수신기를 제안한다. 기존 포토다이오드(PD : Photo Diode)를 적용한 가시광 통신용 수신기는 수신신호 처리를 위한 PD 드라이버와 신호 처리부를 동작시키기 위하여 별도의 전원 회로와 배터리가 필요하다. 따라서, 체적 및 비용의 증가가 불가피하여 가시광 통신의 큰 문제점으로 대두되고 있다. 하지만 제안회로는 PD를 Solar Cell로 대체하여 기존의 신호를 수신함과 동시에 Solar Cell의 광전효과를 통해 생성된 전력을 사용하여 별도의 부가회로 없이 전원 공급이 가능하며 무선통신 기술의 새로운 패러다임을 제시한다. 제안된 회로의 타당성 검증을 위해 Solar Cell을 응용한 시작품을 제작하여 실험 결과를 제시한다.

  • PDF

A Study on the Solar Cell Charging Equipment for Hybrid Vehicle (Hybrid 자동차용 Solar Cell 충전장치에 관한 연구)

  • Kim, G.S.;Park, S.C.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.157-164
    • /
    • 2011
  • Hybrid car can improve fuel efficiency using a power of motor that is generated during constant-speed or deceleration driving. The motor is located between engine and transmission. But, when voltage of main battery is low, fuel efficiency is low because the voltage can't run the motor. In this situation, this study observed fuel efficiency when using solar cell for assistance power. In order to verify a fuel consumption of hybrid car equipped solar cell for assistance power, the car was tested downtown driving. As hybrid car was equipped solar cell for assistance, fuel consumption was reduced 8.35 % at running air conditioner. And, at air conditioner doesn't work, fuel consumption was reduced 6.88 %. This point of view, CO2 is expected to reduce in similar proportion.

Development of LED Street Lighting Controller for Wind-Solar Hybrid Power System

  • Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1643-1653
    • /
    • 2014
  • This paper presents the design and implementation of a wind-solar hybrid power system for LED street lighting and an isolated power system. The proposed system consists of photovoltaic modules, a wind generator, a storage system (battery), LED lighting, and the controller, which can manage the power and system operation. This controller has the functions of maximum power point tracking (MPPT) for the wind and solar power, effective charging/discharging for the storage system, LED dimming control for saving energy, and remote data logging for monitoring the performance and maintenance. The proposed system was analyzed in regard to the operation status of the hybrid input power and the battery voltage using a PSIM simulation. In addition, the characteristics of the proposed system's output were analyzed through experimental verification. A prototype was also developed which uses 300[W] of wind power, 200[W] of solar power, 60[W] LED lighting, and a 24[V]/80[Ah] battery. The control system principles and design scheme of the hardware and software are presented.

Power Generation Change According to Angle Control of Solar Power Plant Panel (태양광 발전 패널 각도 제어에 따른 발전량 변화)

  • Han, Myung-Hee;Woo, Je-Teak;Lee, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.685-692
    • /
    • 2019
  • In this paper, the relationship between the angle control of the panel contributing to the optimum power generation efficiency of the solar power plant is investigated. For a total of eight months, one of the two plants with the same equipment configuration changed their angles every three months and the other plants did not change their angle. In this study, we propose a model that can maximize the power generation efficiency by comparing and analyzing the difference of power generation between stationary solar power station and stationary solar power station through simulation.

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

Performance Prediction of a Solar Power System with Stirling Engine (Matching Collector/Receiver with Engine/Generator Systems) (스털링엔진 태양열 발전시스템의 성능예측(집열기.수열기 및 엔진.발전기 시스템의 조화))

  • Bae, Myung-Whan;Chang, Hyung-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.794-799
    • /
    • 2001
  • The simulation analyses of a solar power system with monolithic concentrator by using a stirling engine are carried out to predict the system performance in four test sites. The site has different intensities and distributions of direct solar radiation respectively. Seoul, Pusan and Cheju in Korea, and Naha in Japan are selected as test sites. To accomplish the same demand of a 25 kW output that the power level of a system has, it needs to take the matching of collector/receiver with engine/generator systems. In such a case, also, the size of the collector is sometimes adjusted. In this study, the diameter of the collector is decided by using the solar radiation of design point, which is defined as the sum of average and standard deviation $\sigma$ of maximum direct solar radiation distribution for a day during a year in the respective test site. It is found that the average power output during the system operating time in the case of slope error ${\sigma}_s=2.5$ is within the range of 9 to 13 kW.

  • PDF