• Title/Summary/Keyword: Solar Position

Search Result 277, Processing Time 0.031 seconds

Characterization of Films Sputtered with the Cu-Ga Target Prepared by the Cold Spray Process (저온분사법에 의해 제조된 Cu-Ga 타겟의 스퍼터링 특성평가)

  • Cho, Youngji;Yoo, Jung Ho;Yang, Jun-Mo;Park, Dong-Yong;Kim, Jong-Kyun;Choi, Gang-Bo;Chang, Jiho
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The microstructural properties and electrical characteristics of sputtering films deposited with a Cu-Ga target are analyzed. The Cu-Ga target is prepared using the cold spray process and shows generally uniform composition distributions, as suggested by secondary ion mass spectrometer (SIMS) data. Characteristics of the sputtered Cu-Ga films are investigated at three positions (top, center and bottom) of the Cu-Ga target by X-ray diffraction (XRD), SIMS, 4-point probe and transmission electron microscopy (TEM) analysis methods. The results show that the Cu-Ga films are composed of hexagonal and unknown phases, and they have similar distributions of composition and resistivity at the top, center, and bottom regions of the Cu-Ga target. It demonstrates that these films have uniform properties regardless of the position on the Cu-Ga target. In conclusion, the cold spray process is expected to be a useful method for preparing sputter targets.

Comparison of Global Optimization Methods for Insertion Maneuver into Earth-Moon L2 Quasi-Halo Orbit Considering Collision Avoidance

  • Lee, Sang-Cherl;Kim, Hae-Dong;Yang, Do-Chul;Cho, Dong-Hyun;Im, Jeong-Heum;No, Tae-Soo;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.267-280
    • /
    • 2014
  • A spacecraft placed in an Earth-Moon L2 quasi-halo orbit can maintain constant communication between the Earth and the far side of the Moon. This quasi-halo orbit could be used to establish a lunar space station and serve as a gateway to explore the solar system. For a mission in an Earth-Moon L2 quasi-halo orbit, a spacecraft would have to be transferred from the Earth to the vicinity of the Earth-Moon L2 point, then inserted into the Earth-Moon L2 quasi-halo orbit. Unlike the near Earth case, this orbit is essentially very unstable due to mutually perturbing gravitational attractions by the Earth, the Moon and the Sun. In this paper, an insertion maneuver of a spacecraft into an Earth-Moon L2 quasi-halo orbit was investigated using the global optimization algorithm, including simulated annealing, genetic algorithm and pattern search method with collision avoidance taken into consideration. The result shows that the spacecraft can maintain its own position in the Earth-Moon L2 quasi-halo orbit and avoid collisions with threatening objects.

The Development of Performance Evaluation Program of Building Integrated Photovoltaic System (건물일체형 태양광발전 시스템 성능평가 프로그램 개발)

  • Kim, Beob-Jeon;Park, Jae-Wan;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.85-90
    • /
    • 2015
  • Purpose: In design and planning Building Integrated Photovoltaic(BIPV) system can reduce cost by replacing building facade as construction material such as roofs, outer walls and windows as well as generating electricity. BIPV system should be applied at the early stage of architectural design. However, it is hard to decide whether using BIPV system or not for architects and builders who are not professional at BIPV system because performance of system is considerably influenced by types of module, installation position, installation methods and so on. It is also hard for experts because commercialized analytical program of photovoltaic systems is too complicated to use and domestic meteorological data is limited to partial areas. Therefore, we need evaluation program of BIPV system which can easily but accurately interpret generating performance and evaluate validity of BIPV system at the early stage of architectural design even for inexpert. Method: In this study, we collected meteorological data of domestic major region and analyzed generation characteristic of BIPV system by using PVsyst(commercialized software) in accordance with regions, types of solar module, place and methods of installation and so on. Based on this data, we developed performance evaluation program of BIPV system named BIPV-Pro, through multiple regression analysis and evaluated its validity. Result: When comparing predictive value of annual average PR and annual electricity production of BIPV-Pro an that of PVsyst, each of root mean square error was 0.01897 and 123.9.

SPECTROSCOPIC AND PHOTOMETRIC STUDY OF STARBURST GALAXIES: OPTICAL AND NEAR INFRARED PROPERTIES OF A BLUE COMPACT DWARF GALAXY MRK 49 IN THE VIRGO CLUSTER

  • Sung, Eon-Chang;Kyeong, Jae-Mann;Byun, Yong-Ik
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.5
    • /
    • pp.121-137
    • /
    • 2008
  • We present optical and near-infrared imaging and long-slit spectroscopy for the blue compact dwarf galaxy (BCD) Mrk 49 in the Virgo Cluster. The surface brightness distribution analysis shows that Mrk 49 consists of an off-centered blue bright compact core of r = 10" and a red faint outer exponential envelope. The $H_{\alpha}$ image and color difference suggest that these two components have different stellar populations: a high surface brightness population of massive young stars and an underlying low surface brightness population of older stars. The redder near-infrared colors of the inner most region suggest that the near-infrared flux of Mrk 49 originates from evolved massive stars associated with the current star-forming activity. The total apparent magnitude is $B_T\;=\;14.32$ mag and the mean effective surface brightness is ${\mu}_{eff}(B)\;=\;21.56$ mag $arcsec^{-2}$. Long-slit spectroscopy shows that Mrk 49 rotates apparently as a solid body within r = 10" in a plane at position angle 55 degrees with an amplitude of about $20\;km\;sec^{-1}$. The measured radial velocity of Mrk 49 was derived as $1,535\;km\;sec^{-1}$; and the total mass of stars and gases is in the range of 3 to $6\;{\times}\;10^9\;M_{\odot}$. The mass-to-light ratios for the central region of Mrk 49 in I and B band are estimated 1.0 and 0.5, respectively. The upper limit of the dark matter to visible matter ratio seems to be < 5. The oxygen abundance is $12\;+\;\log(O/H)\;=\;8.21\;{\pm}\; 0.1$ which is about one quarter of the solar value while the relative helium abundance appears to be similar to that of the sun.

The first insight into the structure of the Photosystem II reaction centre complex at $6{\AA}$ resolution determined by electron crystallography

  • Rhee, Kyong-Hi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.83-90
    • /
    • 1999
  • Electron crystallography of two-dimensional crystalsand electron cryo-microscopy is becoming an established method for determining the structure and function of a variety of membrane proteins that are providing difficult to crystallize in three dimension. In this study this technique has been used to investigate the structure of a ~160 kDa reaction centre sub-core complex of photosystem II. Photosystem II is a photosynthetic membrane protein consisting of more than 25 subunits. It uses solar energy to split water releasing molecular oxygen into the atmosphere and creates electrochemical potential across the thylakoid membrane, which is eventually utilized to generate ATP and NADPH. Images were taken using Philips CM200 field emission gun electron microscope with an acceleration voltage of 200kW at liquid nitrogen temperature. In total, 79 images recorded dat tilt angles ranging from 0 to 67 degree yielded amplitudes and phases for a three-dimensional map with an in-plant resolution of 6$\AA$ and 11.4$\AA$ in the third dimension shows at least 23 transmembrane helices resolved in a monomeric complex, of which 18 were able to be assigned to the D1, D2, CP47 , and cytochrome b559 alfa beta-subunits with their associated pigments that ae active in electron transport (Rhee, 1998, Ph.D.thesis). The D1/D2 heterodimer is located in the central position within the complex and its helical scalffold is remarkably similar to that of the reaction centres not only in purple bacteria but also in plant photosystem I (PSI) , indicating a common evoluationary origin of all types of reaction centre in photosynthetic organism known today 9RHee et al. 1998). The structural homology is now extended to the inner antenna subunit, ascribed to CP47 in our map, where the 6 transmembrane helices show a striking structural similarity to the corresponding helices of the PSI reaction centre proteins. The overall arrangement of the chlorophylls in the D1 /D2 heterodimer, and in particular the distance between the central pair, is ocnsistent with the weak exciton coupling of P680 that distinguishes this reaction centre from bacterial counterpart. The map in most progress towards high resolution structure will be presented and discussed.

  • PDF

Characteristics of Weather and Climate over the Okhotsk Sea

  • KIM Young Seup;HAN Young Ho;CHEONG Hyeong Bin;DASHKO Nina A.;PESTEREVA Nina M.;VARLAMOV Sergey M.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.974-983
    • /
    • 1997
  • The Okhotsk Sea is unique natural object with climatic peculiarities. The climate of the Okhotsk Sea results from the general distribution of solar radiation during a year, and the characteristics of the atmospheric circulation that varies through a year: In cold half year the main pressure formations are Siberian high and Aleutian low. Asian low centered on Afghanistan dominates over the Asian continent in summer. The North-Pacific sea surface is under effect of permanent North Pacific high. The changes in their position from year to year are very significant. The anticyclonic activity over the Far Eastern Seas is one of the main factors for the formation of weather anomalies over the adjacent territories. The analysis of summer weather characteristics over the coast of Okhotsk and East Sea using the data obtained from Hydrometeorological stations during $1949\~1990$ showed that, to a great extent, distribution of the air temperature depends on thermal state of the Okhotsk Sea and atmospheric circulation over it. We show some relations between weather characteristics and the intensity of atmospheric action center for the North Pacific high in summer when its ridge propagates to Okhotsk Sea. Correlation coefficients between air pressure over the Okhotsk Sea and air temperature for the coastal areas reach up to 0.7. Analysis of the spatial-temporal distribution of main meteorological values over the Okhotsk Sea such as air pressure, and air temperature are also performed.

  • PDF

Statistical study on nightside geosynchronous magnetic field responses to interplanetary shocks

  • Park, Jong-Sun;Kim, Khan-Hyuk;Araki, Tohru;Lee, Dong-Hun;Lee, Ensang;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.116.1-116.1
    • /
    • 2012
  • When an interplanetary (IP) shock passes over the Earth's magnetosphere, the geosynchronous magnetic field strength near the noon is always enhanced, while the geosynchronous magnetic field near the midnight decreases or increases. In order to understand what determines the positive or negative magnetic field response at nightside geosynchronous orbit to sudden increases in the solar wind dynamic pressure, we have examined 120 IP shock-associated sudden commencements (SC) using magnetic field data from the GOES spacecraft near the midnight (MLT = 2200~0200) and found the following magnetic field perturbation characteristics. (1) There is a strong seasonal dependence of geosynchronous magnetic field perturbations during the passage of IP shocks. That is, the SC-associated geosynchronous magnetic field near the midnight increases (a positive response) in summer and decreases (a negative response) in winter. (2) These field perturbations are dominated by the radial magnetic field component rather than the north-south magnetic field component at nightside geosynchronous orbit. (3) The magnetic elevation angles corresponding to positive and negative responses decrease and increase, respectively. These field perturbation properties can be explained by the location of the cross-tail current enhancement during SC interval with respect to geosynchronous spacecraft position.

  • PDF

Relationship Between EUV Coronal Jets and Bright Points Observed by SDO/AIA

  • Kim, Il-Hoon;Lee, Kyoung-Sun;Lee, Jin-Yi;Moon, Yong-Jae;Sung, Suk-Kyung;Kim, Kap-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.112.1-112.1
    • /
    • 2012
  • We have investigated the relationship between EUV coronal jets and bright points observed by Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly (AIA). For this we consider 39 EUV coronal jets from May 2010 to July 2011 in 171 A identified by Heliophysics Events Knowledgebase (HEK) which provides an automatic identification of coronal jets. We look for coronal jet-bright point pairs as follows. First, we select the size of event area as 360 arcsec * 360 arcsec where the coronal jets are located at the center of the area. Second, we select jet-bright point pairs in case that they are located at the same position or just adjacent. Third, we select jet-bright point pairs that are connected by loops each other. Otherwise, we select jet-bright points pairs as the nearest one. As a result, we present 19 coronal jet-bright point pairs. The mean distance of these pairs is 77.24 arcsec. According to their distance and morphological connection, we classify the following three groups: 1) Adjacent (6 events), 2) Loop connected (5 events), and 3) Not connected in appearance (8 events). The histogram of mutual distance has two peaks; the first peak corresponds to the first group and the other one to the second group. We compare these events with previous observations and theoretical models as well as discuss possible physical connections between jets and bright points.

  • PDF

A Study of Sustainable Architectural Design Elements Based on the Classification of Natural Elements (자연요소 중심으로 분류한 친환경 건축계획 요소에 관한 연구)

  • Yim, Su Hyun;Park, Hyeon Soo
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.3-12
    • /
    • 2010
  • Sustainable design is getting to be controversial issue in all industries over the world particularly, in architecture as the amount of energy usage in architecture occupies 40%. Therefore, it is essential to make the standard for the sustainable design. In order to construct the sustainable design, firstly it should be considered that sustainable design elements based on natural resources to increase building energy efficiency is established and classified. The method of sustainable design divides into passive design and active design. Passive design method should be examined with active one simultaneously for more efficient usage of energy. Next, the study is followed how the sustainable design elements is adopted in buildings through the comparison of cases study of domestic and oversea. The result of case study shows similar adoption of sustainable design elements between oversea and domestic. However, the difference is shown in the building orientation and shape and the window size and position in Solar energy as well as high performance structure in Heat energy. These elements are the most significant elements in order to reduce energy load. In oversea, sustainable design is generated by architects, a client, and consultants based on the close cooperation in the beginning of early design phase before deciding building shape and envelope while in the domestic field adoption for sustainable design is conducted after deciding building shape and material. In order to design sustainable architecture more study is necessary in early stage for Zero Carbon and reducing building energy load through relation with specialists, a client and architects.

Generation characteristics of transparent BIPV module according to temperature change (건물일체형 투명 모듈의 온도 변화에 따른 발전 특성)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;Yu, Gwon-Jong;Jang, Dae-Ho;Lee, Moon-Hee;Kim, Jun-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.210-211
    • /
    • 2007
  • Amid booming PV(photovoltaic) industry, BIPV(Building Integrated PV) is one of the best fascinating PV application technologies. To apply PV in building, variable factors should be reflected such as installation position, shading, temperature effect and so on. Especially a temperature should be considered, for it affects both electrical efficiency of PV module and heating and cooling load in building. Transparent PV modules were designed as finished material for spandrels are presented in this paper. The temperature variation of the modules with and without air gap and insulation were compared and analyzed. The results showed that the module with air gap and insulation has a much larger temperature variation than another transparent module. The temperature of the module reached by 55degree C under vertical irradiance of lower 500$W/m^2$. And the temperature difference between these modules was about 15degree C. To analyze the output performance of module according to temperature variation, separate module was manufactured and measured by sun-simulator. The results showed that 1 degree temperature rise reduced about 0.45% of output power.

  • PDF