• Title/Summary/Keyword: Solar PV Generation

Search Result 331, Processing Time 0.024 seconds

Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level (스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구)

  • Yoon, Jong-Ho;Oh, Myung-Hwan;Kang, Gi-Hwan;Lee, Jae-Bum
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.

The intelligent solar power monitoring system based on Smart Phone (스마트폰 기반의 지능형 태양광 전력적산 모니터링 시스템에 관한 연구)

  • Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1949-1954
    • /
    • 2016
  • Smart grid technology can be called grid techniques to improve the efficiency of the electric power by exchanging bidirectional information of electric power with real-time between electric power suppliers and consumers. Recently, the solar power generation system is being applied actively. However the solar power system has several problems leading to reduce overall electricity generation, because the difficult of the diagnosis and the solar power system failure such as PV(PhotoVoltaics) and inverter. In order to build an efficient smart grid, a stable electric power energy requirements capture and management and early fault detection is essentially required in solar power generation system. In this paper, it is designed to monitor the operating status of the solar power monitoring system from a remote location through a RS-485 or TCP/IP communication module to monitoring the output of solar power energy and abnormal phenomenon, to developing the measurement module and to transfer measured data.

An Experimental Study on Relationship Between Temperature Change and Generation Performance of a-Si BIPV Window System (박막 BIPV창의 온도변화와 발전성능 상관관계에 관한 실측연구)

  • Kim, Bit-Na;Yoon, Jong-Ho;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.179-184
    • /
    • 2012
  • This research on building Integrated Photovoltaic System replacing windows and doors with amorphous silicon thin film PV windows and doors installing same exact mount on Mock-up. The windows and doors should be installed in different angle and bearing so that we can analyse the amount of electricity from them. The objective of the research is to evaluate and investigate the relationship between factors(intensity of solar radiation, PV window surface temperature, incidence angle, and sky conditions) that affects performance of PV window and performance. The range and method of this research is to establish monitoring system and analysis the data from the monitoring system to evaluate the performance of PV windows that have thin film of solar battery. We should evaluate the insolation according to the position of PV window, output, and surface temperature according to months and seasons so that we can figure out the relationship between these. And we should investigate the relationship between performance and efficiency according to incidence angle and sky condition so that we can figure out the correlation between factors and performance.

The observation of solar cell's micro-crack depending on EVA Sheet's lamination condition for photovoltaic module (PV 모듈용 EVA Sheet의 Lamination 공정 조건에 따른 태양전지 크랙발생 현상 관찰)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Huh, Chang-Su;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.9-9
    • /
    • 2008
  • Recently, the thickness of solar cell gets thinner to reduce the quantity of silicon. And the reduced thickness make it easy to be broken while PV module fabrication process. This phenomenon might make PV module's maximum power and durability down. So, when using thin solar cell for PV module fabrication, it is needed to optimize the material and fabrication condition which is quite different from normal thick solar cell process. Normally, gel-content of EVA sheet should be higher than 80% so PV module has long term durability. But high gel-content characteristic might cause micro-crack on solar cell. In this experiment, we fabricated several specimen by varying curing temperature and time condition. And from the gel-content measurement, we figure the best fabrication condition. Also we examine the crack generation phenomenon during experiment.

  • PDF

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.

The Operating Characteristics of Tracking PV System Using Air Compress Energy Charging Method (공기압축 에너지저장방식의 추적식 태양광발전시스템 운전특성)

  • Park Jeong-Min;Kim Hyung-Suk;Baek Hyung-Lae;Cho Geum-Bae
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1544-1546
    • /
    • 2004
  • This paper describes the element of solar cell's characteristics, photovoltaic system and solar tracking through experiment. Furthermore, it proposes the experiment results of the PV system is contained solar modules, power conditioning system and the solar tracking system using air compress charging energy The experimental results show that the PV system is always operated at maximum power of solar cells and tracking the sun in order to generate efficiently power generation and propose a capability of its application.

  • PDF

A study of high-efficiency rotating condensing hybrid solar LED street light module system (고효율 회전 집광형 하이브리드 태양광 LED 가로등 모듈 시스템 연구)

  • Min, Kyung-Ho;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.50-55
    • /
    • 2021
  • Solar power generation, which is one of the methods of using solar energy, has a high possibility of practical implementation compared to other renewable energy power generation, and it has the characteristic that it can generate as much power as needed in necessary places. In addition, maintenance is easy, unmanned operation is possible, and power management can be performed more efficiently if operated in a hybrid method with existing electric energy. Therefore, in this study, numerical analysis using a computer program was performed to analyze the efficient operation and performance improvement of solar energy of the rotating condensing type solar LED street lamp. As a result, the two-axis tracking type could obtain 15.23 % more electricity per year than the fixed type, and additional auxiliary power generation was required for the fixed type by 19 % per year than the tracking type. As a result of computational fluid dynamics(CFD) simulation for PV module surface temperature prediction, the The surface temperature of the Photovoltaics(PV) module incident surface was predicted to be about 10℃ higher than that of the fixed type.

A Study on Electric Capacity and CO2 by the Roof Top PV System of the Industrial Building in Korea (한국 산업용 건물지붕 적용 PV에 의한 발전량 및 CO2 분석연구)

  • Kim, Ji-Su;Lee, Eung-Jik;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.131-136
    • /
    • 2010
  • The purpose of this study is to provide foundational data for expansion of solar generation in building application, a clean energy, by introducing applicability of solar power generation system on roofs of industrial buildings and computing expected amounts of power and carbon dioxides reduction. As methodologies of this study, after reviewing 120,000 domestic factories to verify the BIPV feasibility for industrial building sthrough theoretical considerations of solar generation system, we calculated BIPV application methods and subsequent expected power generation quantity and carbon dioxide reductions through roof type analysis. we analyzed four cases of expected power generation amounts of solar batteries according to application methods, and when considering that the main type of roofs are slant roofs according to the investigation result about roof forms of domestic industrial complexes, we believe that the module angle of a slant roof around $17^{\circ}$(case3) is most suitable for the application. Finally, we came up with 517,944[TOE] as the corresponding petroleum tonnage based on this computed expected power generation amount and the amount of 1,214,836[$tCO_2$] carbon dioxide reductions by calculating them by energy sources.

A Study on the Applicability of Double-Sided Vertical Photovoltaic Panels Based on Energy Productivity Analysis (에너지 생산성 분석 기반 양면발전형 수직 태양전지의 활용 가능성 탐색)

  • Seung-Ju Choe;Seung-Hoon Han
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.84-97
    • /
    • 2023
  • This study aimed to investigate the feasibility and potential applications of utilizing bifacial photovoltaic (PV) panels from an architectural perspective. It also aimed to establish a foundational dataset for installation and operational guidelines for bifacial PV panels through a comparative analysis of energy production performance with single PV panels. The research encompassed several key steps, including a comprehensive literature review, calculation of solar surface radiation values, development of datasets for bifacial and single PV energy production, and a performance comparison between both approaches. The results of the study show that bifacial PV panels exhibit optimized energy production capabilities within the range of 40 to 80 degrees, contingent upon the specific installation location. Consequently, it is recommended that the installation of bifacial PV panels in Korea should primarily focus on southwest-to-west orientation. Furthermore, it was concluded that bifacial PV panels could contribute an equivalent or even superior level of energy production compared to single PV panels, even if their performance exhibited a marginally lower efficiency of 2% to 5% with an 18% power generation efficiency.

The Output Characteristics of 3kW BIPV System (건물일체형 태양광발전시스템의 실증분석)

  • Kim, Ji-Hoon;Jie, Bian Wen;Lee, Kang-Yeon;Kim, Pyoung-Ho;Oh, Geum-Gon;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.386-389
    • /
    • 2006
  • BIPV(Building Integrated PV) system can expect dual effects that reduce expenses for establishment of PV system by adding new function as outer covering material of building expect producing the electricity. In case of PV(photovoltaic system) there are many generation differences according to the exterior environmental facts(solar cell array, design and installation condition of interactive inverter system). In this paper, we compared constitute factors of 3kW BIPV(solar cell module, inverter), operating characteristic and total system characteristic(utilization, generation efficiency, loss fact) and found out long time operating data using a watch instrumentations. By use of long time operating result, compare a totally operating characteristics, and we proposed a next building application of BIPV. BIPV system that is proposed in this paper, was established in Solar Energy research center of Chosun University, composed with system. The objective of this paper, is to provide a efficient BIPV design method through the considerations for the integration of PV system.

  • PDF