• 제목/요약/키워드: Solar PV Generation

검색결과 331건 처리시간 0.027초

공기식 집열 지붕 난방시스템의 실험 연구 (An Experimental Study of Solar fir Roof Heating System With PVT Collector)

  • 강준구;김진희;김준태
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.232-237
    • /
    • 2008
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The extraction of hot air from the space will enhance the performance of BIPV systems. The solar collector utilizing these two aspects is called PV/T(photovoltaic/thermal) solar collector. This research is about the development of solar roof system with PV/T collector to apply into buildings. A test cell experiment was performed with the PVT roof installed: It found that the hot air supply from the PVT air collector contributed to increase the heating efficiency by 2 times and the electrical efficiency by about 8%.

  • PDF

3kW BIPV시스템의 운전특성 (The Operating Characteristics of 3kW BIPV System)

  • 김지훈;박정민;최연옥;최석조;조금배;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.552-554
    • /
    • 2006
  • BIPV(Building Integrated PV) system can expect dual effects that reduce expenses for establishment of PV system by adding new function as outer covering material of building expect producing the electricity. But, there are many generation differences according to the exterior environmental facts(solar cell array, design and installation condition of interactive inverter system) Therefore, it is difficult to optimum design. Consequently in advance design system, we experiment 3kW BIPV(Building Integrated PV) generation. We concrete PV system efficient application of variable. BIPV system that is proposed in this paper, was established in Solar Energy research center of Chosun University, composed with system. This research is a basic study for application of building integrated photovoltaic system for building

  • PDF

3kW 건물일체형 태양광발전시스템의 출력특성 (The Output Characteristics of 3kW BIPV System)

  • 김지훈;김평호;임양수;조금배;백형래;오금곤
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.471-474
    • /
    • 2006
  • BIPV(Building Integrated PV) system can expect dual effects that reduce expenses for establishment of PV system by adding new function as outer covering material of building expect producing the electricity. But, there are many generation differences according to the exterior environmental facts(solar cell away, design and installation condition of interactive inverter system) Therefore, it is difficult to optimum design. Consequently in advance design system, we experiment 3kW BIPV(Building Integrated PV) generation. We concrete PV system efficient application of variable. BIPV system that is proposed in this paper, was established in Solar Energy research center of Chosun University, composed with system. This research is a basic study for application of building integrated photovoltaic system for builing.

  • PDF

태양전지어레이 순시 출력변동에 의한 외란의 억제기능을 갖는 계통연계형 태양광발전 시스템 (Grid Connected PV System with a Function to Suppress Disturbances caused by Solar-cell Array Instantaneous Output Power Fluctuation)

  • 김홍성;최규하;유권종
    • 태양에너지
    • /
    • 제19권4호
    • /
    • pp.63-69
    • /
    • 1999
  • The conventional grid connected PV(Photovoltaic) system has a unstable output pattern due to its dependence on the weather condition, although solar-cell array averagely has a regular output characteristics to have a peak output nearly at noon. Therefore assuming the high density grid connection in the future, this unstable output pattern can be one of the main reasons to generate power disturbance such as voltage variation, frequency variation and harmonic voltage generation in low voltage distribution line. However general grid connected solar-cell system do not have functions to cope with these disturbances. Therefore this study proposed a advanced type grid connected PV system with functions to suppress output power fluctuation due to solar-cell array output variation and showed the levelling effect of fluctuation due to instantaneous array output variation.

  • PDF

표면냉각을 통한 PV 모듈의 출력 향상에 관한 연구 (Improving the power of PV module by a surface cooling system)

  • 김대현;김동준
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.88-93
    • /
    • 2009
  • This study was conducted to improve the power of PV module using a surface cooling system One of the unique characteristics of PV module is power drop as a module surface temperature increases due to the characteristics of crystalline silicon used in a solar cell. To overcome the output power reduction by temperature effect, module surface cooling using water circulation was performed. By cooling effect, module surface temperature drops maximally $20.3^{\circ}C$ predicting more than 10% power enhancement. Maximum deviation of voltage and current between a control and cooled module differed by 5.1 V and O.9A respectively. The maximum power enhancement by cooling system was 12.4% compared with a control module. In addition, cooling system can wash the module surface by water circulation so that extra power up of PV module can be achieved by removing particles on the surface which interfere solar radiation on the cells. Cooling system, besides, can reduce the maintenance cost and prevent accidents as a safety precaution while cleaning works. This system can be applied to the existing photovoltaic power generation facilities without any difficulties as well.

Performance of Wind-Photovoltaic Hybrid Generation System

  • Oh Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.319-324
    • /
    • 2005
  • This paper reports the performance of Wind-PV(Photovoltaic) hybrid system. The output power of PV is affected by the environmental factors such as solar radiation and cell temperature. Also, the output power of wind system is generated with wind power. Integration of Wind and PV resources, which are generally complementary, usually reduce the capacity of the battery. This paper includes discussion on system reliability, power quality and effects of the randomness of the wind and the solar radiation on system design.

태양광어레이 방위각 및 경사각 변화에 따른 일사량 영향분석에 관한 연구 (A Study on the Influence to Solar Radiation by Changing the Azimuth and Tilt of a Photovoltaic Array)

  • 최영관;이남형;김건중;조용
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.712-716
    • /
    • 2013
  • In solar generation, the PV array's azimuth is headed due south and the tilt is generally $33^{\circ}$ in order to acquire maximum generation. However, when installed in a site where there are buildings or other facilities, the azimuth and tilt are adjusted. Yet, when the azimuth and tilt are deviated from due south and $33^{\circ}$, the generation quantity is decreased substantially and currently a method to estimate the decreasing proportion is unavailable. Therefore, in this thesis, an equation on the "change ratio of solar radiation due to the changes in tilt and azimuth" was deduced by utilizing empirical data on the amount of solar radiation received according to the changes of tilt and azimuth and Interpolation. By using this equation, the decreasing proportion of generating quantity due to the installation methods of PV system can be estimated, therefore, it can be usefully utilized when designing and going through feasibility studies for development of solar generation systems.

옥외 관측을 통한 EVA, POE PV모듈의 열화 연구 (Outdoor Testing and Degradation of EVA and POE Encapsulated Photovoltaic Modules)

  • 김제하
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.847-852
    • /
    • 2016
  • Using both EVA and POE encapsulants, we fabricated polycrystalline Si PV modules and performed a set of reliability tests of PID, DH, TC, and Complex prior to outdoor installation. The power output with temperatures and insolation as well as I-V characteristics had been monitored under outdoor environments for 18 months. In the entire period, the total power of 3,576 kWh from POE PV modules was observed larger than 3,449 kWh from EVA PV modules by 3.5%. All the PV modules showed a 5.6~9.2% drop in the conversion efficiency. As for the solar power generation, the PV modules performed through PID, TC test revealed distinct difference in between EVA and POE for which the POE PV module produced more power by +11.4% and +6.6%, respectively, as measured in the 18th month. In addition, POE was proved to protect better the solar cells under PID influence.

발코니 설치식 가동형 차양겸용 BIPV 디자인과 성능연구 (Movable BIPV Shading Device Design for Apartment Building Balcony)

  • 진경일;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.85-92
    • /
    • 2010
  • At the beginning the 21st century, we are interested in renewable energy especially photovoltaic. So, we have been installed PV at the building roofs so that we call it building integrated photovoltaic. But strictly speaking, installing the PV on the roof is not building integrated. There are few BIPV designs especially for balcony. In the apartment building, roof is good installing place for PV, but its area was limited. Now a day, built apartment building's heights are more and more increased so that the performance of installed PV on the roof cannot be enough to use even the public use. Thereby, we need the new space in the building to install the PV except the building roof. This study suggests the building facade balcony as a new space to install the PV with building integrated PV design. Hence, in this study, we are designed the movable BIPV shading device for apartment building balcony, and verified its performance with computer simulation. Developed device in this study can works as an electronic generation device and an overhang on the side balcony. As a result, the electronic generation performance of device contributes 15~30% to each apartment unit. The more unit width increase, the better contributed device generates.

대용량 PV 어레이의 최적설계에 관한 연구 (A Study on the Optimal Design of Large-scale Photovoltaic Array)

  • 황인호;김의환;안교상
    • 한국태양에너지학회 논문집
    • /
    • 제31권1호
    • /
    • pp.8-14
    • /
    • 2011
  • Recently, a number of large-scale photovoltaic(PV) power generation system has been installed all over the world. Thus, in order to improve the system efficiency, the optimal design of the large-scale PV systems has become an important issue. DC cable loss of PV array is one of the design factors related to the system efficiency. This paper introduces the array design method of a 500kW Photovoltaic power plant. Three types of the PV array are suggested. Also, string cables, sub-array cables and array cables are designed within 1% of voltage drop in the line, and the DC cable losses are analyzed. The results of this paper show that the DC cable loss of large-scale PV array can be reduced by adopting a proper sub-array design method.